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Abstract
To achieve robot navigation in crowded environments having high densities of moving people, it is insufficient to simply
consider humans as moving obstacles and avoid collisions with them. That is, the impact of an approaching robot on human
movements must be considered as well. Moreover, various navigation methods have been tested in their own environments
in the literature, which made them difficult to compare with one another. Thus, we propose an autonomous robot navigation
method in densely crowded environments for data-based predictions of robot-human interactions, together with a reproducible
experimental test under controlled conditions. Based on localized positional relationships with humans, this method extracts
multiple alternative paths, which can implement either following or avoidance, and selects an optimal path based on time
efficiency. Each path is selected using neural networks, and the various paths are evaluated by predicting the position after a
given amount of time has elapsed. These positions are then used to calculate the time required to reach a certain target position
to ensure that the optimal path can be determined. We trained the predictor using simulated data and conducted experiments
using an actual mobile robot in an environment where humans were walking around. Using our proposed method, collisions
were avoided more effectively than when conventional navigation methods were used, and navigation was achieved with good
time efficiency, resulting in an overall reduction in interference with humans. Thus, the proposed method enables an effective
navigation in a densely crowded environment, while collecting human-interaction experience for further improvement of its
performance in the future.

Keywords Mobile robot navigation · Crowded environment · Human interaction · Planning

1 Introduction

1.1 Research Background andMotivation

One expected application of mobile robots is the task of
guiding users in environments with high densities of pedes-
trians such as railway stations, shopping malls, and stadiums
[1]. Due to improvements in human recognition technologies
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[2] and simultaneous localization and mapping (SLAM) [3],
mapping and navigating environments, while recognizing
and avoiding humans, has become feasible formobile robots.
In the field of mobile robot navigation, various approaches
that employ sensors placedwithin the environment have been
implemented, but this study achieves navigation by recog-
nizing humans with sensors installed on the robot itself, to
reduce the operating costs incurredwhen the robots are intro-
duced to new environments.When operating in environments
where humans are active, robots must avoid causing feel-
ings of discomfort or obstruction in humans, in addition to
avoiding collisions with them. Furthermore, pedestrians are
not simply moving obstacles, but they also have the unique
characteristics of altering their movement in response to the
robots, making collision avoidance more challenging.

Meanwhile, to promote development of such navigation in
human-interactions, it is important to have a common testbed.
Since the humans’ behavior is affected by various factors
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such as density, destination, and obstacles other than a robot,
considering scenarios of human’s behavior carefully is nec-
essary according to objectives of experiments.

1.2 Related Research

When navigating in environments with active humans, route
planning and speed control are necessary for avoiding col-
lisions with humans. Considering pedestrians as moving
obstacles, Berg et al. implemented multi-agent navigation
through a speed control method called reciprocal velocity
obstacle (RVO) [4]. While effective, RVO does not explic-
itly address interactions between pedestrians and robots,
so robots exhibited abnormal proximity to the surrounding
humans. By introducing a Kalman filter to RVO, Kim et al.
enabled uncertainty to be handled, thus solving the problem
of abnormal proximity [5]. However, introducing uncertainty
into this navigation method triggered the Freezing Robot
problem (FRP) [6], where the robot becomes unable to move
in high-density, crowded environments, due to high uncer-
tainty of collision with pedestrians.

Trautman et al. proposed to solve theFRPunder a coopera-
tive collision avoidance scenario between robot and humans.
However, generally speaking, we cannot guarantee that all
pedestrians always cooperate with robots. Of course, on
the contrary, if pedestrians are completely adversarial to
robots, FRP can never be solved. This suggests that some
explicit communication, such as asking pedestrians to make
room for the robot, will be effective to resolve the prob-
lem. Nevertheless, we believe that focusing on navigation
against non-cooperative pedestrians will certainly contribute
in building navigation strategy in a densely crowded envi-
ronment. This is because improvement of performance in
such non-cooperative environments will reduce necessity of
robots to ask pedestrians to make room for them.

From the perspective of consideration of robot-human
interaction in navigation, Mehta proposed a method [7]
based on expandingMulti-PolicyDecisionMaking [8]. Here,
decision policies are designed in advance and may include
Go-Solo, Follow, and Stop. By switching between these
policies, according to the state of surrounding humans, the
robot can select behaviors, such as Stop, rather than simple
obstacle-avoidance, Go-Solo, that may cause FRP. In this
case, a geometric prediction of human behavior is used when
each policy is evaluated, but it is unclear whether humans
conform completely to this model. If robots could predict
interactions based on the behaviors that humans actually
exhibit in response to robots, they could navigate in harmony
with the real world. Studies [9] on predicting humans’ inter-
actions exist, but focus on one-to-one encounters between
humans and robots. Contrarily, our work attempts to predict

interactions when multiple pedestrians are crowded densely
together. Furthermore, it is believed that local observations
of individual positions can become inaccurate, in environ-
ments where humans move in crowds, because of occlusion
and density of human legs/bodies. In this case, methods
that enable robots to account for overlapping humans when
planning motions, such as ‘Avoid approaching humans’ or
‘Follow humans walking ahead in the same direction’, can
be more effective.

Additionally, Abbeel reported using inverse reinforce-
ment learning to teach robots human behavior [10], which
enabled robot navigation in complex environments, such as
within crowd flows, to be taught via human instructions. Fur-
thermore, Kretzschmar et al. proposed learning of socially
compliant behavior model based on pedestrian behavior
or tele-operated robots behavior via inverse reinforcement
learning [11]. Based on a probabilistic modeling, their model
could capture both discrete navigation decision and con-
tinuous (relatively small) variance of human trajectories.
However, the approach of inverse reinforcement learning is
vulnerable to bias and other undesirable effects, as it relies
on the specific traits of the human instructor or environments
where data are collected. Our approach, on the contrary,
focuses only on local interaction between humans and robots
even within the same data-driven approach. Therefore, it is
expected that the behavioral model can be constructed in a
local and less-environmentally influenced scope.

Chen et al. used deep reinforcement learning [12] to teach
robots human social norms [13]. These norms, such as “when
walking on the right, pass people on the left” are implicit
rules for humans in crowds, but were taught to the robot
by providing the movement, when passing-each-other, as
a reward to the robot. They were thereby able to achieve
navigation that did not cause discomfort in the surround-
ing humans. In environments where humans are present in
high densities, however, the robots should move with the
flow of pedestrians going in the same direction rather than
following the social norms to avoid collisions with every
individual. Therefore, teaching social norms is difficult to
apply to high-density, crowded environments. Furthermore,
this method faces challenges when responding to planning
requirements for effective robot motion, considering global
optimality.

Finally inmost relatedworks, unfortunately, experimental
evaluations have been conducted under varying crowd condi-
tions, which directly affects the evaluation of the navigation
ability in high-density crowded environments and makes it
difficult to objectively verify their effectiveness via repro-
duction. Thus, another important issue in this field of robotic
navigation in crowded environments is that a common repro-
ducible and controlled test has not yet been proposed.
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1.3 Research Objective

We propose here a navigation method wherein robots navi-
gate while making predictions, by learning human interac-
tion in high-density, crowded environments. We propose a
method for extracting multiple paths, based on the distribu-
tion of nearby humans, as a method that expresses multiple
navigation strategies, for both avoiding and following, under
specific circumstances where the robot is surrounded by
nearby pedestrians. Based on extracting paths and acquiring
an interaction model, the robot trajectory upon path selec-
tion can be predictedwhile considering humans’ interactions.
Using of acquired interaction model, the robot can pre-
dict excessive human interference, through low-speed robot
movement caused by the interference. By combining a local-
ized interaction prediction and global movement planner, the
optimal path can be chosen from multiple options. We tested
the proposed navigation method in a real-world environment
with many pedestrians to validate its effectiveness in a con-
trolled and reproducible way.

This study provides following contributions to the field
of mobile robot navigation in crowded environment. First,
we present tests of mobile robot navigation in a continu-
ous flow of humans with an explicitly-controlled density.
The conditions and settings make the evaluation process
of mobile robot navigation in highly crowded environment
reproducible and comparable. Second, not only is the robot
able to avoid humans in one-on-one situations, but also it can
avoid or follow a crowd of pedestrians through the localized
path extraction method. In a previous study [14], navigation
was achieved in an environment that was crowded with many
people, but a ceiling-mounted camera had to be used to mea-
sure the humans. It should be noted that our study uses only
sensors embedded on the robot itself, realized by express-
ing the path from the viewpoint of the robot based on the its
local sensing. Second, this work provides a framework that
enables data collection about human interactions that can
be used for predictions. This enables predictions that incor-
porate human behavior in actual environments, making this
framework distinct frommotion planning approaches such as
pedestrian optimal reciprocal collision avoidance (PORCA)
[15], which addresses human intention and uncertainty as a
partially observable Markov decision process, because it can
be positioned as an experience-based method. Finally, this
method considers optimization in combination with global
path planning. This is advantageous in comparisonwith those
methods based on information of control by human operator,
such as inverse reinforcement learning.
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Fig. 1 Robot control architecture for data collection. Collected human
leg position and robot’s trajectories are used for construction of robot
trajectory predictor

2 Problem Settings

For this study, we assume a crowded environment where
humans tend to generate some flows due to a high density.
To ensure focus on human interactions, no obstacles were
placed in the region around the start and target positions. A
mobile robot navigates itself toward its destination using only
its onboard sensor information and is not supposed to have
an explicit communication with pedestrians (e.g., it does not
ask humans to make room for itself by gesture or utterance).
The primary goal of the robot is to quickly reach a defined
target position, beginning from a fixed initial position, while
also avoiding collisions with humans. The secondary goal
is to avoid causing any psychologically oppressive feelings
because of traversing against pedestrians.
For implementation and validation of the mobile robot navi-
gation, we rely on a simulator for data collection of building
a predictor and experiments with real human subjects for val-
idation of the proposed navigation. Details of the simulator
are described in appendix, and experimental conditions for
validation will be described in Sect. 4.

3 NavigationMethod Based on Path
Extraction and Selection

Figures 1 and 2 provide an overview of the proposed navi-
gation method. Figure 1 outlines the offline data collection
process on the simulator, used for configuring the predictor,
which finally predicts human interactions. Path candidates
are extracted based on 2D LiDAR point cloud via leg detec-
tion module. One of paths is randomly selected for a certain
duration for navigation. The robot trajectory is recorded
while the path remains selected. The resulting data are used to
configure a human/robot trajectory predictor. The predicted
trajectory reflects interactionbetween the robot and its nearby
pedestrians.

At the online navigation stage, as shown in Fig. 2, the pre-
dictor forecasts the trajectories and arrival positions, several
seconds into the future, given that the extracted candidate
path is selected. Integrating the predicted results and the
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Fig. 2 Robot control architecture for online navigation. Constructed
human trajectory predictor is used for path selection

global path planning results ensures that the most efficient
path is selected, as determined by the shortest time of arrival
to the target position.

3.1 Extracting Path Candidates Based on Local
Observations

In this study, two types of path extractors, each expressing
oneof two strategies, are configured to extract the robot paths.
One is the Avoidance strategy, in which the robot avoids
humans and aims for the goal, while the other is the Follow
strategy, in which the robot follows humans. To extract path
candidates, a one-dimensional potential function is defined
using angleφ [rad] in a polar coordinate systemwith the robot
at the origin. This function is a simplification of the well-
known artificial potential field method, defined over a 2D
plane, to one dimensional (1D), angle, space. It expresses the
difficulty of moving forward in each possible driving direc-
tion in the robot’s immediate surroundings, where a negative
number indicates that the movement is very easy (Fig. 3).

Assuming i denote the index of human recognized by the
robot, (1) shows the calculation of the potential function,
P follow(φ), for extracting the path to follow humans that are
walking in the same direction as the robot. Here, in the robot
coordinate system, the polarization angle of the polar coor-
dinate is φ, the human i direction is θi , and the direction of
the goal is θg . These angles are 0 deg in the front view of the
robot, and the right side is defined as positive. Afollow

i and
σfollow are each defined below, in (2) and (3), respectively.

pfollowi (φ) = Afollow
i exp

{
− (φ−θi−0.1θg)2

2σfollow2

}
(1)

Afollow
i =

{
(Rvfollowi + 0.1) exp {−(ri − 1)} if ri ≥ 1

(Rvfollowi + 0.1) otherwise

(2)

σfollow =
{
exp(0.1ri − 2) if ri ≥ 6.1

0.25 otherwise
(3)

This potential function is configured using a Gaussian
function and designed so that locally minimum values can
be obtained from the direction where humans are moving

away from the robot. The distance to detected human i is
defined as ri , the component of the direction toward human i
in the robot velocity is Rvfollowi , and Ai is the coefficient that
relates to the potential size.

Afollow and σfollow are used to express that moving with
a faster speed away from the robot (large Rvfollow) results
in a greater influence from the human, and humans that are
further away (large ri ) exhibit less influence. The amplitude
of the Gaussian function is expressed by Ai , and humans
that are further away have correspondingly smaller impacts.
Additionally, the coefficient σfollow relates to the horizontal
width of the potential, and a narrower width indicates a nar-
row range that exerts an effect when (4) is superimposed.
Therefore, this coefficient is set so that the potential width of
humans narrows with decreasing ri . Within a certain range,
σfollow was set constant at 0.25 to prevent a too narrowwidth.
The threshold value of 6.1 in (3) was decided so that two
divided cases have almost equal values at ri = 6.1, prevent-
ing sudden change of σfollow. The potential, P follow, which is
used to extract paths, is defined from the sum of the potential
pfollowi for each individual human i .

P follow(φ) =
N∑
i=1

pfollowi (φ) (4)

When following humans, the direction φ for humans that are
moving away from the robot is minimal, and the robot can
then engage in following these humans.

Figure 4 shows an example of a path extracted using
P follow. The left panel shows a distribution of surround-
ing humans, and the right side shows the corresponding
P follow(φ). The lines on the human dots represent velocity.
In the left panel, there is a total of eight humans and two
humans are present in front (slightly to the right) and two
humans in the front left of the robot. One of the extracted
direction, along indicating that paths for following groups of
humans have been extracted.

Two types of avoidance path candidates are also extracted.
One is the path passing between humans, based on Pavoid(φ),
and the other is the path going around the outside of a group
of humans at the edge of the robot’s field of vision. Regarding
the first candidates, Pavoid(φ), Aavoid, and σavoid are defined
as

pavoidi (φ) = Aavoid
i exp

{
− (φ−θi )

2

2σavoid2

}
(5)

Aavoid
i =

{
exp {−(ri − 1)} if ri ≥ 1

1 otherwise
(6)

σavoid =
{
exp(0.1ri − 2) if ri ≥ 2.9

0.18 otherwise.
(7)
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Fig. 3 Parameter definitions for
potential P follow(φ)(left) and an
example of its component
(right). local minima are used
for candidates of paths

-150 -100 -50 0 50 100 150

Fig. 4 Example of following
directions. There are two groups
of humans walking in similar
directions to the robot and two
directions are extracted to
follow them. The two directions
in the left panel correspond to
two local minima in the
potential in the right panel
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The calculated 1Dpotentialminimumvalue yields a path that
passes between people. The 1D potential used to extract this
path is obtained from the sum of the detected human i poten-
tials shown in (5). Further, when ri decreases below 2.9 m,
σavoid assumes a constant value of 0.18 to prevent σavoid from
becoming too small, which could cause the extraction of a
path too close to a human. Similar to the case of (3), a thresh-
old value ri = 2.9 was decided for maintaining continuity of
σavoid in the divided cases.

Pavoid(φ) =
N∑
i=1

pavoidi (φ) + pg(φ) (8)

The first term in this equation is the potential function with
a minimal gap between humans. The second term, pg(φ), is
the potential function, defined in (9), and it minimizes the
goal direction.

pg(φ) = −B exp
{
− (φ−θg)

2

β

}
(9)

Here, the parameters B and β > 0 determine the shape of
the potential function.

Regarding path candidates going outside of humans, in
many cases, the potential decreases monotonically at both
side limits of the 2DLiDARfield of vision, and theminimum
cannot be defined. Thus, to extract a path that goes around the
outside of a group of humans, the potential function value on

the outer side of the field of view from the maximum nearby
potential is approximated by the following equation since the
path away from the maximum nearby potential is extracted
at a constant interval angle.

p̂(φ) = Around exp

(
− φ2

σ 2
round

)
(10)

Here, Around sets the maximum nearby potential and esti-
mates σround through the least-squares method. Based on
this estimated value, the direction where σround s displaced,
towards the edge of the field of view, from the maximum
direction, becomes the path candidates φL

round and φR
round.

The left panel of Fig. 5 shows an example distribution of
humans and the corresponding potential, Pavoid(φ) is shown
in the right panel. With Pavoid(φ)minimized, a path between
human groups can be extracted, but the minimum value can-
not be detected on either side. Clearly, a direction of travel
that goes around the outside of the group has been extracted
in Fig. 5 as two paths going around the group, φL

round and
φR
round can be readily observed.

3.2 Robot Velocity Control

In addition to determining the direction of travel, as described
in the previous section, we used the optimal velocity (OV)
model [16] to ensure that the robot moves at velocities appro-
priate for its distance from humans. This model is typically
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Fig. 5 Example of obstacle
avoidance and round directions.
Three candidate directions are
extracted, center of which
directs to the gap between two
groups of humans. The left and
right directions are to go around
the human groups
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Fig. 6 Desired velocity profile of OV model Vdes(d)

used as a vehicle control model and it well describes steady
flow and congestion, not only for traffic system but also for
pedestrians’ flow (e.g., [17]). Thus, the OV model is used as
a method for controlling the robot velocity, so that the robot
can smoothly join a human’s flow in the case of the Follow
strategy.

Given d, the distance from the robot to the closest human,
the target velocity Vdes(d) is determined as

Vdes(d) = Vmax

1 + tanh(βc)
{tanh(βd − c) + tanh(βc)}, d > 0.5

(11)

Vpb(d) = 2dVdes(d), 0 ≤ d ≤ 0.5 (12)

Figure 6 shows Vdes(d) and Vpb(d)Vdes(d) and Vpd(d). At
0.5 m or below, marked by the dotted line, Vpb causes the
robot to decelerate rapidly to avoid a collision.

Furthermore, we consider the ±30 deg direction of the
global path from the robot viewpoint, which is the direction
leading straight to the goal if there are no obstacles except
for pedestrians. To avoid wasting motion when there are no
obstacles near the robot, if the sensor value indicates that no
obstacles exist within 5 m, the robot advances at 1.0 m/s in
the direction of this global path.

Fig. 7 Definition of trajectory
of robot

robot

position along  
straight trajectory

actual 
position

3.3 Data Collection and Predictor Configuration

On the simulator, data are collected for interactions between
the robot and humans, when they travelled in proximity
according to paths determined by the extraction method
described above. The trajectory predictor is then configured
from that data (Table 1). As described in Sect. 3.1, the path
candidates are classified into two groups: “Avoid,” which
passes through the gaps between and around humans, and
“Follow,” which follows humans. Consequently, two cor-
responding types of trajectory predictors are created using
multi-layered neural networks. The predicted interactions,
shown in Fig. 7, are expressed as displacement from the tra-
jectory, when the robot is moving straight forward at a steady
velocity in the direction of the path selected at any point in
time, the ‘straight-ahead’ route (Table 1).

The definitions for these element inputs are shown in Fig.
8. Displacement from the straight-ahead route is expressed as
Δxn ∈ R

2, n = 1, · · · , N , where n denotes a discrete time
with time stepΔt , and N denotes themaximum discrete time
for the prediction. Thus, the output of the approximator for
each function is a 2N -dimensional vector. Table 2 shows
common settings of the avoiding/following motion predictor
neural networks. To collect a variety of moving directions,
random selection from multiple candidate directions was
controlled so that directions with less samples collected in
the past are selectedmore frequently. Ten precent of the train-
ing samples were used for testing. In the process of training,
loss functions of both training data and test data equally con-
verged, which indicated absence of overfitting.
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Table 1 Inputs for robot
trajectory predictors

Avoiding motion predictor Following motion predictor
Selected direction α Selected direction α

Goal direction θgoal Velocity of followed human vfollow

Velocity of left & Right human vleft, vright Position of followed human dfollow, θfollow

Position of left person dleft, θleft Position of left person dleft, θleft

Position of right person dright, θright Position of right person dright, θright

Table 2 Settings of motion
predictors Number of middle layers 1

Number of neurons in the middle 20

Optimization method Ada Grad method [26]

Loss function Average squared error

Number of training samples 14,300 (avoiding), 14,640 (following)

Fig. 8 Inputs for robot
trajectory prediction

goal

robot
d

dleft
selected 
moving 
direction

goal

robot
d

dleft

Among the inputs for each predictor in Fig. 8, the position
and velocity of humans on either side of the travel direction
serve as inputs for Avoid. Of the humans on either side, those
close to the robot’s direction of travel and to the robot itself
are selected. For Follow, the position and velocity of humans
to be followed, as well as the positions of humans on either
side, are input. In both cases, one of the two indicators of
human distance and direction to the left and right is randomly
selected from the Pareto Optimal Solution. If no humans are
present to the left or right, the distance and angle are each set
as 1000.

3.4 Online NavigationMethod

During online navigation, the robot extracts candidate paths
using the extraction method described in Sect. 3.1. After the
path selection described below has been conducted, drive
control, based on velocity control, is conducted as described
in Sect. 3.2.

Figure 9 shows the predicted trajectory when the ith path
candidate is selected. Based on the N th position, x̂(i)

N , of the
positions from the predictor described in Sect. 3.3, the global
path planner calculates the path to the goal position, using
the A* algorithm. The path length is L(i).

Robot

Planned global path 
(A* algorithm)

Goal

Predicted trajectory
for -th local path

Fig. 9 Predicted local trajectory and global path

When the candidate path i is selected, the total time cost,
C (i)
total, to reach the goal is defined by

C (i)
total = C (i)

local + C (i)
global

=
(

Δθ(i)

ωrobot
+ NΔt

)
+ L(i)

vrobot
. (13)

Here, C (i)
local is the time cost required to move N steps along

the selected path, and it corresponds to the parenthetical term
on the second line of (13). The first item inside these paren-
theses is the time cost for the robot turning direction, starting
from the direction it is currently facing. The quotient of the
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angle of deflection θ(i) toward path i is used, with the rota-
tional velocity ωrobot [rad/s] kept constant. The second item
inside the parentheses is the time cost for N steps. Since
the observational period Δt is constant, this value is a con-
stant common to all candidate paths. The third term, after
the parenthesis, expresses the time cost to arrive at the goal
position after localized path selection has occurred, and is
obtained by dividing the length of the route L(i), obtained
from the global planner, by the velocity of the robot, vrobot.
To simplify the global cost estimation, we assume that the
robot moves to the goal at a constant velocity. A selection is
made, among the candidate paths, using the following equa-
tion to minimize the time cost described above.

i∗ = argmin
i

C (i)
total (14)

This path selection is performed atΔt [s] intervals. During
this time, the robot follows the path candidates described in
Sect. 3.1, which are refreshed with each observational frame,
and implements the velocity control described in Sect. 3.2.

4 Experiment

We confirmed, both in the simulator and the actual mobile
robot, that the proposed method enabled the robot to arrive
at its destination, without collisions, in an environment with
a human flow of approximately 0.2 humans/m2. We then
validated these robot-human interactions with an increased
density of 0.5 humans/m2, which corresponds to an envi-
ronment full of moving crowds, such as a crowded railway
station. This presents a significant challenge for navigation
methods simply designed to avoid collisions with single
humans.

Our proposed method was constructed by the data col-
lected by the simulator, and evaluated by actualmobile robots
and pedestrians. There are two primary reasons for collecting
data in this way:

– It cannot be said that human behavior on a ROS-stage-
based simulator adequately represents true human behav-
ior. Specifically, it is difficult to bridge the differences
in behavior with actual movements, including avoidance
behaviors when near other humans or a robot, and large
repulsion-basedmovements. Thus, we do not believe that
the detailed verification of robot-human interference is
meaningful in this simulation.

– It can, however, be acknowledged that within the range
where humans do not get too close to each other and
to robots, avoidance movements in the simulator have
a certain degree of realistic spontaneity. Therefore, we
believe that there is value in verifying a learner, which

has learned behaviors, before approaching point-blank
range.

4.1 Robot Condition

The robot model used in the simulator was assumed to be
an omnidirectional mobile robot with a diameter of 0.45 m
and a height of 1 m, while these values were 0.56 and 0.9 m
for the actual experimental robot. Followings are the robot
and simulation settings: walking speed of 0–1.0 m/s, turning
angular velocity of−90 to 90 deg/s, generatable acceleration
of −1 to 1 m/s2, and angular acceleration of − 90 to 90
deg/s2. A two-dimensional (2D) LiDAR sensor with a view
angle of −90 to 90 deg, a measurable distance of 0.1–30
m, and a resolution of 0.25 deg was embedded in the robot.
Within the sensor measurement range, human positions were
measured, and adifferentialwas used to estimate their speeds.
If humans overlapped, as is the case with robot navigation in
a densely crowded environment, only the front human was
viewed. The simulator equipment was based on a ROS Stage
[18], and details of this simulator is described in appendix.

4.2 Design of Reproducible Environmental
Condition

Figure 10 shows the experimental environment. Humans
move in the direction of the arrow, within the range indi-
cated by the 2 mwide and 8 m long gray rectangle. There are
eight humans inside this range, arranged so that their density
is always 0.5 humans/m2. Six points are defined on each side
of the pedestrian flow, denoted A1–A3 and B1–B3, and the
robot goes back and forth between each A point and the three
B points. Crossing the flow once and arriving at the destina-
tion on the opposite side counts as one trial. In this way, each
method is tested 18 times. We requested the following of the
subjects while they were walking: to maintain the regulated
density, enter the area as soon as another person leaves; when
within the designated area, walk at a natural velocity; choose
where to walk inside the area at random, preferably not along
the middle line; do not alter behavior when approaching the
robot and keep this response consistent; and do not learn or
predict the robot behavior by its repetition.

When returning to the inflow position after leaving the
experimental area, subjects were to return to their original
position through the side opposite to the goal position of the
robot at that point in time to avoid approaching, and subse-
quently affecting, the robot after it passed through the area.
Subjects were also not provided with a description of the
evaluated navigation methods or the experiment intention.

The robot detected and measured pedestrian legs with a
ROS leg detector [19] and 2D LiDAR point group informa-
tion. Human detectors, which detect and measure the human
positions, based on leg detectors are currently available, but
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Fig. 10 Experimental environment settings

they were not used in this work because they produce fre-
quent false-negatives. Leg detectors recognize humans by
sensing each leg and transmitting the information to the path
extractor. Even when humans are walking at a steady veloc-
ity, their legs do not necessarily move at the same steady
velocity, so this information was filtered and smoothed over
time. After smoothing, the estimated time and velocity val-
ues were obtained at 25 ms cycles. Accordingly, candidate
paths were extracted in 30 ms cycles, and the robot wheel
velocity control was implemented in 5 ms cycles.

The process for selecting the route with minimal cost,
based on (14), was implemented in 330 ms cycles. The pre-
dictor time steps were N = 5. In the simulation, the path
selection cycle was Δt = 600 ms, so 3 s of movement was
predicted.

4.3 ComparisonMethods

We refer to our proposed method as navigation with local
human-interaction prediction (NLHP). Table 3 shows three
alternative methods, used for comparison.

All three of these methods utilize the A∗ method, which
is widely used for motion planning. A∗

diff offers the most
promising performance, whereas A∗

omni and A∗
omni35 were

included to investigate the overall performance impact of
their varied motion characteristics. A description of the three
methods is provided below.

– A∗
diff:With the robot radius set as 0.5m, a route to the goal

positionwas planned.A velocity commandwas assigned,
assuming that the robot runs along the planned trajectory
by its differential two-wheel mechanism.

– A∗
omni: The same radius and route planning as in A∗

diff.
The velocity command was assigned while gradually
shifting toward the tangential direction of the gen-
erated route, assuming an omnidirectional movement

mechanism. Therefore, A∗
omni exhibits salient behavior

differences from A∗
diff, when A∗ provides a path with a

direction that is perpendicular to the current robot pos-
ture. A∗

diff causes the robot to first stop and turn toward the
perpendicular direction (along the path), whereas A∗

omni
keeps moving along the route with its current posture and
turn gradually toward the perpendicular direction.

– A∗
omni35: The route was planned with the radius set as

0.35 m, and the velocity command was assigned as in
A∗
omni.

Under A∗
omni and A∗

omni35, frequent collisions occurred with
obstacles that were 180 deg outside of the frontal field of
view of the robot. Contrarily, in the NLHP method, the robot
always moved while facing the direction of the selected path,
minimizing the risk of colliding with humans that are right
beside or in front of it. Because it reduces the risk of collision,
A∗diff was used as the primary comparisonmethod. Notably,
A∗
diff is a direction control method that, due to translational

movement, does not move horizontally or diagonally back-
wards because of its motion model based on a differential
two-wheel mechanism. We verified performances of A∗

omni
and A∗

omni35 as examples of prioritizing time-efficiency over
safety in high-density environments.

4.4 Evaluation Index

We used the following indices to evaluate and compare the
various navigation methods.

– Duration: the time required to arrive at the goal position
[s]

– Human flow efficiency: number of humans who passed
a specific point (entrance of the gray region in this mea-
surement) per time [humans/s]

– Collisions: the number of collisions or near-collisions,
identified based on pedestrians’ emergency avoidance
behaviors

– Disturbances: the number of times the flowof pedestrians
was disturbed, identified based on pedestrians’ changing
their movement direction to avoid the robot

– Blame: psychological intimidation experiences when
pedestrians were encountered

Because the robot could only measure humans in a 180 deg
frontal range, collisions andflowdisturbanceswere identified
and measured visually, by us, based on videos taken during
the experiment.

Blame, at a given time t , is quantified by the following
equation, in which the humanmovement directionwas added
to the evaluation method [7] based on information measured
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Table 3 Robot movement of
comparison method

A∗
diff A∗

omni A∗
omni35

Obstacle avoidance radius (m) 0.50 0.50 0.35

Motor command model Differential drive Omni wheel Omni wheel
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Fig. 11 Duration for each of the evaluated methods

and considered by the robot.

B(t) = max
i

βi
2

1 + eαi

αi = ‖Δtvrobot − xi‖

βi = exp

{
− (φi − θi )

2

2σ 2
blame

}
(15)

Here, i represents humans within a 1.5 m radius of the robot
center, and the blame is evaluated for those humans exhibit-
ing the highest blame levels. αi represents the difference
between human positions, xi , and the robot position after
Δt [s]. Closer distances are represented by smaller denom-
inators, and subsequently larger quotients. βi is set so that
smaller differentials between the direction of human motion,
θi , and the direction of the robot seen by the humans, φi

[rad], result in larger βi values. The parameter σblame = 0.5
sets the range of influence, in the form of a Gaussian func-
tion. Thus, blame is an indicator that increases when the
robot approaches humans or is positioned in the direction of
human movement. The blame at each time instant is evalu-
ated as blame per time, which represents an average value
for the time a human spends within the 1.5 m radius of the
robot.

4.5 Experimental Results

Figure 11 shows the time required for our NLHPmethod and
the other comparativemethods to reach the goal position. The
error bars indicate a 95% confidence interval and ** indi-
cates statistically significant difference at the p < 0.01. We
observe that A∗

omni35, which did not hesitate to pass through
small gaps among humans, reached the goal in the short-
est time, and NLHP reached it next. Specifically, the NLHP
method provided a 43% time reduction compared with A∗

diff,
the primary comparison method.
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Fig. 12 Comparison of human flow efficiency during navigation
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Fig. 13 Number of collisions produced by the evaluated methods

Figure 12 shows the efficiency of human flow, which
was found to be approximately 1 humans/sec for all cases.
Since the robot affects humans’ behaviors only in some lim-
ited period in each trial, differences between human flows
were small. However, there were statistically significant dif-
ferences between the proposed method and the comparison
methods.

Collisions and disturbances are shown in Fig. 13 and 14,
respectively. While the NLHP method and Adiff exhibit sim-
ilar numbers of collisions, A∗

omni and A
∗
omni35 produced large

numbers of both. This is primarily attributed to interference
with humans outside of the robot’s range of view. Regarding
the number of disturbances, A∗

omni35 achieved the least num-
ber. It was due to its aggressive and quick strategy, causing
very short duration of interaction against pedestrians. Thus,
as a total balance including other indices, it cannot be over-
estimated. Comparison of blame indicated in Fig. 15 shows
that the proposed method realized the best performance in
reducing psychological influence to humans, though statis-
tical significance was not obtained due to large variation of
the blame values in each trial.

All robot behaviors recorded in videos can be accessed
from the author’s HP [20]. As examples, snapshots of navi-
gations with starting point B1 and destination A3 are shown
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in Figs. 16, 17, 18 and 19 (resolution was lowered for pri-
vacy). Each shot in the sequences is drawn with 3 s interval.
First, it can be observed that the density of pedestrians in the
setting is quite high and challenging when humans walk in
their natural speedwithout specific consideration to the robot.
For cases of A∗

omni and A∗
omni35, the robot took path closer

to the direct diagonal line toward the destination. However,
it is sometimes human-unconscious, and the robot collided
with a pedestrian at the third frame in Fig. 19. With the pro-
posed method, NLHP, the robot was flew downstream of the
pedestrian’s flow while crossing it. This behavior is caused
by the mechanism of extracting human-following direction.
In the case of A∗

diff in Fig. 17, the robot was always trying
to be safe, but it was too slow and still could not avoid the
‘blamed’ situation sufficiently.

The comparisons between the five indices with the com-
parisonmethods are summarized in Table 4. It was confirmed
that NLHP, the proposedmethod, showed better performance
in comparison with A*diff, the primary comparison method.
On the contrary, as can be seen in duration and number of dis-
turbance comparisons, A*omni35, the aggressive and quick
strategy, showed a better performance. This means that there
can be some room for the proposed method to improve its
performancewhilemaintaining the low interference property
against humans.

Even though NLHP showed lower blame / time than the
other methods in average, there was no statistically signif-
icant differences due to large deviations. It can be partly
caused by fluctuations in measurement of human velocity
because the blame defined in (15) includes estimated direc-
tion of human motion. Therefore, decreasing noise in human

motion estimation is expected to increase the reliability of
the measurement of blame.

4.6 Discussion

The path extraction described in Sect. 3.1 does not utilize
human velocity information when setting the robot driv-
ing direction because we were unable to measure human
velocities with sufficient accuracy in our current experi-
mental system. Additionally, we did not observe significant
improvements for methods that did incorporate this informa-
tion. If the leg and human detectors used in this experiment
were improved, and human velocity could be estimated more
accurately, we anticipate that using this information would
improve the candidate path extractions and subsequently the
navigation performance.

Furthermore, in this experimental system, LiDAR pro-
vided the robot with a 180 deg frontal range of observation,
so contact with humans at the rear and sides could not be
avoided. The robotwas sufficiently able to stopwhen humans
were detected in the point-blank range, so improving this
vision to avoid all collisions will make the robot and our
NLHP method viable real-world operation.

Though the basic behavior of the robot with the proposed
method was sufficient in the experiment, there were many
cases where the robot could act against humans more appro-
priately. Parameters for the potential function defined in Sect.
3.1 were mainly tuned based on the robot’s behavior in the
simulation by human hand. However, it is desired to tune
those parameters automatically through both simulations and
real-robot experiments for further improving robot naviga-
tion performance. Optimization techniques (e.g., [21,22])
can be applied for the automatic tuning of the parameters.

5 Conclusion and Future Challenges

In this study, we proposed a method that combines a local
planner for route prediction, based on embedded sensor
information and a global planner that calculates the shortest
distance to the goal, based on map information, to achieve
time-efficient robot navigation in high-density crowded envi-
ronments. First, candidate paths were extracted from the
embedded sensor, and the positions what would be reached
after approximately 3 s were predicted for each of the path
candidates. We used a predictor to forecast the decelera-
tion and the impacts of humans’ interaction to the left and
right. Combining the time cost of reaching the predicted
position and the time cost of reaching the goal, which was
obtained by the global planner, we built a route selection sys-
tem based on global time efficiency. The proposed method
was implemented and verified in an environment with a high
crowd density of 0.5 humans/m2 in a reproducible and con-

123



384 International Journal of Social Robotics (2022) 14:373–387

Fig. 16 Navigation with NLHP (18.7 s)

Fig. 17 Navigation with A∗
diff (32.1 s)

trolled way, which helps different methods to be compared
against each other in a commoncondition. These experiments
demonstrated that navigation could not only be achieved in
this environment, but could be done in a shorter time and
with less interference, while maintaining a similar collision
risk, compared with established, standard A∗-based obstacle
avoidancemethods. The high-density environment employed
in our experiment continuously reproduced its high-density
withmore consistency than other related studies.While these
conditions might not occur with this frequency in real-world
situations, it provides a common problem setting for evalu-
ating navigation methods in crowded environments.

In the future, the prediction accuracy should be improved.
Specifically, the human behavior reproduced in the simulator
must bemore similar to true human behavior.We expect that,
by changing input parameters from those representing indi-
vidual humans to those representing groups, we can enable
prediction of human flows and not just individual travel,
thus improving the prediction accuracy. More precise pre-
diction will allow us to realize prediction in longer time
span. Though we did not focus on behavior of individual
pedestrian in the current implementation, this improvement
will improve the local interaction between the robot and a
pedestrian such as cooperative collision avoidance [6]. Addi-
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Fig. 18 Navigation with A∗
omni (14.9 s)

Fig. 19 Navigation with A∗
omni35 (12.2 s)

Table 4 Summary of comparisons between the proposed and compar-
ison methods

NLHP A*diff A*omni A*omni35

Duration © × © ©◦
Human flow © × × ×
# of collision © © × ×
# of disturbance × × × ©
Blame / time © 	 	 	
‘© ↔ ×’ and ‘� ↔ ©’ indicate (statistically) significant difference
and ‘© ↔ 	’ indicates weak difference

tionally, an option to stop (wait), which is not implemented in
the current method, could further improve the performance.

The proposed NLHP method offers the unique advan-
tage of using data collected from learning. This must be
extended to data collected in the real world [23] and verified.
For example, highly accurate human psychological models
that account for individual differences [24] could be intro-
duced while continuing to confirm the significance of these
for robot navigation. Finally, while A∗-based methods are

a reasonable standard as a basic comparison, there are other
approaches for reciprocal collision avoidance [15,25]. Fur-
ther comparisons against such navigation methods are to be
conducted in our future works.
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Fig. 20 a Pedestrian’s recognition range. b Caution zone and danger
zone for switching behavior. c Pedestrians’ flows generated in simulator
by locating gates. A pedestrian has two feet in the simulator but center
of each pedestrian is measured as its position by other pedestrians or a
robot

permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix: PedestrianBehaviorModel in Sim-
ulator

In the simulator, each pedestrian is supposed to have a virtual
distance sensor that detects distances to other pedestrians and
walls in its neighborhood. The detection range of the distance
sensor is 8 m in the front (−90 deg to 90 deg around its
forward direction) and 5m for other directions (see Fig. 20a).

A pedestrian’s translational velocity v(t) [m/s] and rota-
tional angular valocity ω(t) [rad/sec] are decided by

v(t) = max(vmax, v(t − Δt) + aΔt) (16)

ω(t) = αθs + βθp + γ θg, (17)

whereΔt denotes control cycle. vmax is an individual human
parameter which is assigned inherently to each pedestrian by
a uniformly random value within range [0.8 1.5]m/s. Accel-
eration a is set as 1 m/s2. θs , θp and θg denote angles from
the front of human to center of open space, target direction
and direction of a neighbor human that has the same target,
respectively. The last feedback term γ θg has an effect that
humans aiming at the same target behave as a group by shar-
ing the same moving direction. Gain parameters α, β and γ

corresponding to the angles are set as indicated in Table 5.

Table 5 Gain parameters of rotation velocity controller

α (open space) β (target) γ (group)

Normal mode 0.3 0.6 0.3

Moving obstacle in caution zone 0.9 0.3 0.0

Static obstacle in caution zone 1.2 0.1 0.0

Fig. 21 Pedestrians’ flow in data collection. Gates are placed so that
pedestrians in the simulator generate a flow between the robot’s initial
position and the destination

There are two zones around a pedestrian that switch its
emergent behaviors, named caution zone and of danger zone.
Caution zone is defined by radius 1 m and danger zone is
defined by 0.5 m (see Fig. 20b). When there is an obstacle in
the caution zone, velocities are decided as

v(t) = max

(
vmin,

v(t − Δt)

2

)
(18)

ω(t) = αθs + βθp + γ θg, (19)

where vmin is set as 0.2m/s. But in case when there is an open
space in its front even when there is an obstacle in the caution
zone, velocity is decided as

v(t) = max

(
vmax

2
, v(t − Δt) + aΔt

)
. (20)

If there is an obstacle in danger zone, velocities are decided
as

v(t) = 0 (21)

ω(t) = sign(θs) · random(0 ∼ 1), (22)

where sign() denotes sign function and random() denotes
uniformly randomvalue generatorwithin the indicated range.

In order to guide pedestrians along defined routes, gates
are located in the environment. Each pedestrian has its
assigned sequence of gates to pass. It search for the next
target gate and when it is found, it passes through the gate,
guided by the feedback term θp in (17) and (19). When it has
passed the target gate, the next gate is searched. Pedestrians’
flow is generated by locating gates sequentially as shown in
Fig. 20c as an example.

In the process of sample collection described in section
3.3, the gates described above are located so that pedestrians
generate a chain of flow. Initial positions and destinations of
the robot are placed randomly to cross the flow interatively
as shown in Fig. 21. Once the robot reaches its destination,
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the goal is newly placed randomly in the opposite side over
the flow of pedestrians.
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