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Abstract

Robot navigation poses a di�cult engineering problem. Autonomy in robot navigation is highly
desirable because the range of problems solved by robotics without human intervention is in-
creased. This thesis combines two di�erent problems in robot navigation to improve the �ex-
ibility of autonomous robots. Firstly, non-holonomic mobile robots, i.e. mobile systems whose
movement is restricted along some axis such as car-like vehicles, is a non-linear control problem
that has no clear solution. However, the existing control policies to navigate non-holonomic
robots assume that the kinematics of the robot as well as the sensor con�guration, i.e. sensor
type, orientation, etc., are known beforehand. Secondly, some engineering problems require that
the control system infer autonomously the relation between the control inputs and the sensor
signals, referred as the sensorimotor mapping problem, and involves learning the kinematics of
the robot, the sensor con�guration, or the relation between control inputs and sensor change. In
general, these learning approaches deduce the sensorimotor mapping in holonomic robots, that
is to say, without the constraints characterised by non-holonomic systems. This thesis presents
the formulation and results of an o�ine exploratory method that deals with the problems of
non-holonomic control and unknown sensorimotor mapping in mobile robot systems. The pro-
posed method initially focuses in completing the kinematics model of the system by retrieving
the Jacobians of the sensor inputs with respect to the control outputs in the neighbourhood of
the starting point of the robot. The Jacobian is a measure of rate of change of each sensor signal
with respect to every control input. In order to retrieve the necessary Jacobian values to learn
the kinematics model of the robot, each of the control inputs is controlled in a �xed pattern
to obtain the Jacobian at prede�ned locations of the sensor space. The Jacobian element with
the greatest orthogonality to the Jacobian at the starting location is selected and employed
in deducing a virtual input that is equivalent to a sequence of real inputs. The virtual input
has the same e�ect as navigating the robot along the direction forbidden by the non-holonomic
constraint. The real and virtual inputs are then used to navigate and sample the sensor space
in a systematic manner. Together with the sensor observations, the history of the control inputs
to reach that sensor observation is also stored. The dataset of sensor observations and control
inputs thus obtained is fed to a function approximation algorithm based on applying the least
mean square algorithm on the parameters of the kernels of a Gaussian Radial Basis Function
(RBF). The kernels are distributed uniformly in the sampled region of the sensor space such
that all sensor observations are within the smallest convex region de�ned by the kernel loca-
tions. Once the virtual input is deduced and the sensor space is explored, the controllability
of the mobile robot system is tested. For this purpose, the obtained mapping approximates
sensor observations in the sensor space to chained-form control space, where it is controllable
using well known control policies for non-holonomic systems. In this research, the time-axis
transformation of chained form to linear control form was used, and state-space control meth-
ods to take the robot to the origin were applied. The method was validated by simulated and
experimental results on a unicycle-like system, which consists of a three-state system with two
control inputs and one holonomic constraint. The di�erence between a car-like system and a
unicycle-like system is that the former has a constraint in the rotation radius that limits pure
rotations of the system. The results in the simulated environment showed that the method is
valid for the region of exploration of the sensor space and that the most important source of
deviations of the trajectory of the robot during feedback control is caused by the accuracy of
the approximation. Additionally, the e�ectiveness of the method was demonstrated in a real
experiment by controlling a robot using the approximated mapping obtained previously. Sim-
ulation was performed in Matlab environment whilst the experiment was realised on a Pioneer
3-DX robot with processed images from an o�board camera. A comparison of the simulation
with the Proximal Policy Optimization algorithm (PPO), which is a class of deep reinforcement
learning algorithm, was also performed.
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Chapter 1

Introduction

1.1 Background

There is a growing interest in autonomous navigation in recent years, especially with the intro-
duction of mobile robots in domestic environments, autonomous driving and transportation of
products in manufacturing facilities. For example, the market for automated vacuum-cleaning
robots is expanding with new models released each year, some of them hosting advanced features
such as Simultaneous Localisation And Mapping (SLAM), localisation by upwards-pointing
cameras and radars. These robots cannot move sideways, so it is necessary to �rst rotate in
the spot and align to the desired direction beforehand to achieve a similar movement. The car
industry is rapidly transitioning from manually-driven, petrol-based vehicles to fully automatic,
electric cars with the incorporation of countless cameras, proximity sensors, radar and GPS.
Not only are car-like vehicles unable to move sideways as vacuum-cleaning robots, but also they
cannot turn in the spot, requiring complex manoeuvres to realise similar movements. In these
two examples of vacuum-cleaning robots and autonomous navigation, the kinematics of the
mobile systems are well known beforehand during the design process, and so are the kinds of
sensors, their placement and the speci�cation of the output signal. Hence, the kinematics and
the sensor con�guration are hard coded into the controller of these kind of systems. Industrial
mobile robots face similar challenges as well. But unlike domestic robots or vehicles, they have
additional di�culties to overcome. Industrial robots must be highly �exible to accommodate to
rapid changes in the manufacturing process or in the products to be manufactured. The result
is that in many manufacturing environments, the sensors are not �xed to the mobile robot and
must be recon�gured every time that there is a change in manufacturing. Even when repair-
ing these robots, there could be di�erences in the replaced parts, such as wheel diameters or
distance between wheels, that require manual readjustments to the control parameters. These
changes are time consuming and expensive, requiring highly quali�ed personnel. Therefore, it
would be convenient to have learning systems that quickly accommodates the controller to new
sensor con�gurations.

This thesis proposes a method to improve the controllability of mobile robots when the sensor
con�gurations or the kinematics are not known during the design process of the controller. It
facilitates the emplacement of mobile robots by improving the �exibility in the installation of
sensors. For example, controlling a mobile robot guided by LiDAR is strongly dependent on
the speci�cs of the LiDAR model used, such as the number of scans and angular span of the
scans. Also, original replacement parts for a damaged robot, such as wheels or reduction gears,
might be impractical for economic reasons, and instead parts with di�erent parameters to the
original parts are installed on the robot. Replacing the LiDAR model used or the parameters
of the robot kinematics might require a �rmware update, or it might even be impossible due
to development limitations by the company providing the controller. The method proposed
here enables more �exibility in sensors and robot kinematics by automating the process of
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CHAPTER 1. INTRODUCTION 7

con�guration of new sensors to mobile robots.

1.2 Related research

Research on non-holonomic systems has a long history [21][4]. A detailed explanation of
non-holonomic systems and the relation with other systems is found in [7]. The major prob-
lem of non-holonomic systems is that control laws are di�cult to design. Indeed, there is no
general stabilising law for non-holonomic systems [5], partially because there are unavoidable
obstructions for stabilisation of feedback control [42]. Yet, under speci�c assumptions about
the kinematics of the robot and the environment, stabilising control laws are possible [23]. [3]
overcame the obstructions in discontinuous exponentially stabilising control laws by a singu-
lar coordinates transformation, such as kinematic polar coordinate transformations [1]. In any
case, by using Lagrangian formalism and di�erential geometry, 3-wheeled robots are stabilisable
with static-state feedback controllers [8].

Control of non-holonomic systems is often achieved in chained-form [18], which is a linear
coordinate system specially designed for easy controllability [9]. Navigation problems of systems
in chained-form have been widely studied [37], and are practically realisable with bounded
control signals [31].

Control systems that automatically learn the parameters needed for successful control have
been available for a long time, although they are generally limited to holonomic systems [36].
These learning controllers model the relation between control inputs and sensor outputs in
robots automatically [35], even continuously adapting the model to changes in the sensorimotor
relation [38], or inducing regions of sensor observations without sensory data [20]. These systems
of unknown sensorimotor mapping have been the target of trial-and-error methods as well
[39].

Jacobian control methods for non-holonomic systems have been widely studied in the
past [17][41][49][12], yet these methods assume that the Jacobian is known or can be deduced
from the kinematics of the system. [19] also proposed estimating the Jacobian matrix with
unknown system parameters by approximating the relation between actuators and sensors using
a measurement given by Mutual Information (MI). Estimation of the Jacobian is sometimes
referred to as the bootstrapping problem because obtaining the Jacobian is the �rst step of
a learning system towards learning a model of itself and the environment that can be used for
control purposes [6]. Similarly, uninterpreted sensors and e�ectors [40] and calibration-
free robotics [15][14][28] refer to similar problems.

In the �eld of Reinforcement Learning (RL), there have been many researches related to
mobile robotics [47][50]. In general, RL algorithms are well suited to the problem of unknown
sensorimotor mapping because RL does not rely in models of the environment, but rather
explores the environment, initially by applying control inputs by trial and error and disregarding
the structure of the problem [24]. With the advent of deep neural networks and Actor-Critic
RL methods [11][46][30][33], it has become easier to apply reinforcement learning on navigation
problems of non-holonomic systems [55], although research on deep RL is generally focused to
applications other than control of non-holonomic systems with unknown sensorimotor mapping
[29].

Trajectory tracking control of non-holonomic systems has been often researched in the
past [52][10], specially in relation to unknown camera parameters [51] and adaptive visual
servoing [2][25][54]. Tracking control of uncertain non-holonomic systems is still of some
interest and continues yielding results [53]. Reinforcement Learning has also been introduced to
visual servoing for non-holonomic systems [32], as well as adaptive neural networks.[56]. Visual
servoing has been studied from the viewpoint of Jacobian matrix estimators for holonomic
systems as well [16].

In summary, there are few if not no researches directly tackling the problem of control of
non-holonomic systems with unknown kinematics and unknown sensor con�guration. Either
of these problems has been widely documented in the state of the art, but the combination
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of both problems is a topic that remains practically untouched, specially in the scope of real
robots. The closest methods that approach these two problems simultaneously are those based
in reinforcement learning algorithms, but they are too ine�cient for practical applications in
real environments.

1.3 Objective

The objective of this research is to propose methods that increase the range of applicability of
mobile robotics by combining the problem of non-holonomic control with learning capabilities
of the sensorimotor mapping. Sensorimotor mapping refers to the changes in sensor values when
the system is applied some control input. The proposed method must be physically feasible,
i.e. it must be functional on a real robot, and not only in a simulation.

1.4 Outline

This thesis is organised as follows. Chapter 1 presents the problem of non-holonomic control
with unknown sensorimotor mapping along with a review of the state of the art in this �eld.
The objective of the research is also described here. Chapter 2 describes the problem setting
formally and brie�y describes the approach taken to tackle it. Chapter 3 introduces general
notions about generalised coordinates and non-holonomic systems, which are recurring topics
in this thesis. Speci�cally, the vector spaces considered throughout the thesis are presented:
system space, sensor space, chained-form space and time-axis control form space. Chapter 4
describes well known general techniques used throughout the rest of the thesis that are necessary
to construct the proposed method: Jacobians, function approximation by Gaussian RBF and
state-space control of time-axis control form. Chapter 5 develops the formal tools to solve the
problem with the proposed method and is the core of the research: the main contributions
of this research are presented in Chapter 5 in detail. Chapters 6 is dedicated to showing the
validity of the method in a simulated environment. It includes a comparison with other learning
techniques in the �eld of robot control. Chapter 7 shows the implementation and results of the
proposed method in a real experiment, demonstrating that the method is feasible in real world
problems. Finally, Chapter 8 summarises the research and analyses the implications.



Chapter 2

Problem setting and method

overview

In this chapter the problem is formalised with explicit indication of the assumptions and the
unknowns. Then the general approach taken to solve the problem in this work is described.

2.1 Problem setting

Let u ∈ Rm be the control (input) vector and s ∈ Rn, n > m the sensor (output) vector of a
dynamic driftless a�ne system with state and output equations

q̇ = F (q)u (2.1)

s = H(q), (2.2)

where q ∈ Rn is the vector of generalised coordinates, q̇ is the vector of generalised velocities,
and H : Rn −→ Rn is an isomorphic mapping of class C1. The transformation H is arbitrary
and has no units.

A driftless dynamic system is a system that has no independent term in the state equation:
If u = 0, then q̇ = 0. Equation (2.1) is a driftless dynamic system. Intuitively, a driftless
system does not move when the control input is null. For example, a car-like vehicle whose
control inputs are acceleration and brake is not driftless because under no acceleration or brake,
the vehicle keeps moving. But if instead of acceleration or braking, the control inputs are the
speed of the wheels, then the vehicle is driftless because when the wheels are stopped, so is the
vehicle (unless the driver is aggressively driving the car).

The problem tackled in this research is to �nd a control law u = ϕ(s) that realises a desired
sensor value of s(d) under the condition of unknown F , H (unknown kinematics and sensor
con�guration), with arbitrary q, and with non-holonomic constraints compatible with Pfa�an
form, i.e. A(q)q̇ = 0 [7] (More details in Section 3.2.2). In other words, q is observable but
only through an uncalibrated sensor measurement. The problem is similar under redundant
observations s′ ∈ Rr, r > n, in which case the equation to consider is s′′ = H ′′(q), with s′′ ∈ Rn
and H ′′ being an isomorphic mapping.

This is a list of assumptions:

1. The system has exactly one non-holonomic constraint A(q)q̇ = 0.

2. The system is driftless q̇ = F (q)u+ C | C = 0.

3. The system has exactly two control inputs u =
[
u1 u2

]ᵀ
.

4. The inputs u(1) =
[
1 0

]ᵀ
and u(2) =

[
0 1

]ᵀ
are kinematically feasible.

9
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5. Reverting an input returns the system to the previous state.

6. The sensor outputs are an isomorphic transformation of the internal state variables of the
system.

7. The sensor outputs are di�erentiable with respect to the control inputs, i.e. J = ∂ṡ/∂u
exists.

Point 4 is deduced from (2.1):

q̇ = F (q)u ⇒ F (q)(−u) = −q̇, (2.3)

but it is made explicit in this list of assumptions due to its importance in the developments of
the proposed method.

These are the unknowns of the problem:

1. The kinematics of the dynamic system F (q) =?.

2. The output equation, i.e. the sensor con�guration of the system H(q) =?.

3. The control law u = φ(s) that takes the system from any sensor value s(0) to the desired
sensor value s(d).

In the following chapters a more detailed description of these concepts is given.

2.2 Overview of the proposed method

In this thesis, an o�ine learning algorithm that tackles the above mentioned problem setting
is proposed. This method is based on �nding an approximate function from sensor space
(Section 3.1.4) to chained form (Section 3.1.5) by retrieving sensor observations at several
points along the sensor space to construct an approximate model of the kinematics of the
system and the sensor con�guration. The data available to a controller of a dynamic system in
the problem setting described in Section 2.1 is limited to the control input, which is produced
by the controller itself, and the sensor observations. The relation between the control input and
the sensor observations is called the sensorimotor mapping. By applying a control input to the
dynamic system, a reaction in the form of variations of sensor observations can be measured.
These reactions vary with the current value of the sensor observations. The Jacobian is a
measure of these variations.

The method starts by exploring the vicinity of the sensor space at the starting position to
obtain the changes in the sensor values with respect to the control inputs (Section 4.1), which
is the Jacobian of the system. A Jacobian matrix J , or simply Jacobian, is a matrix of �rst
order derivatives of a multivariate vector-valued function ṡ(u), with u ∈ Rn and s ∈ Rm:

J =
[
j1 · · · jn

]
=

[
∂ṡ

∂u1
· · · ∂ṡ

∂un

]
=




∇ᵀṡ1
...

∇ᵀṡm


 =




∂ṡ1
∂u1

· · · ∂ṡ1
∂un

...
. . .

...

∂ṡm
∂u1

· · · ∂ṡm
∂un



, (2.4)

where ṡ is the vector of rate of change of sensor values and u is the vector of control inputs.
Based on this data, a virtual input (Section 5.1) is deduced that has same e�ect as travelling
along the forbidden direction imposed by the non-holonomic constraints (Section 3.2). This
virtual input is constructed by composing sequences of legal actions.
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The second stage of the method involves exploring the sensor space in pre�xed patterns
that make use of the virtual input obtained previously (Section 5.2). During exploration,
sensor observations are retrieved in regular intervals as well as the history of the control inputs
required to arrive at each sensor observation. This data is stored in a dataset that is supplied
to a Gaussian radial basis function approximator (Section 4.2), which is a supervised learning
method. The pre�xed patterns are designed such that the resulting approximated function
approximates the system to an equivalent linear system in chained form (Section 3.1.5). By
transforming each sensor observation to chained form, it is possible to control the system with
linear controllers. Here the method was demonstrated by evaluating the accuracy of the chained-
form transformation with a control policy based on time-axis control form (Section 3.1.6.1). The
method was also compared with a state-of-the-art controller based on reinforcement learning
(Section 6.3).



Chapter 3

Coordinates in non-holonomic

systems

Before delving into the technical details of the proposed approach, it is necessary to understand
some fundamental concepts in the �eld of dynamic systems. In this chapter, two concepts are
introduced: Generalised coordinates, which is a generalisation of the state space of a system,
and non-holonomic systems, which is a class of dynamic systems with restrictions on either the
state values or their evolution in time.

3.1 Generalised coordinates

A generalised coordinate may be regarded as a generalisation of the state variables that describes
the con�guration of a dynamic system. Basically, generalised coordinates express the same
information as the state vector of the system, but they can also be expressed in any other
coordinate base with a coordinate transformation function. For the rest of this document,
the so-called state variables of a system correspond to what will be referred as the canonical
generalised coordinates.

3.1.1 De�nition

The set of generalised coordinates {qi} is a set of parameters that uniquely describes the con�g-
uration state of a system. Cartesian coordinates is a concrete example of generalised coordin-
ates. Polar, cylindrical and spherical coordinates are other concrete examples of generalised
coordinates. The set of generalised coordinates is not unique. For example, Figure 3.1 shows
two sets of generalised coordinates, Cartesian and spherical, of a hypothetical system that con-

Figure 3.1: Two sets of generalised coordinates for describing a system of three degrees of freedom
in the same state.

12
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Figure 3.2: Canonical set of generalized coordinates (x, y, θ) for the unicycle.

Figure 3.3: Alternative sets of generalized coordinates (r, φ, θ) and (r, φ, θ′) for the unicycle.

sists of a point in three-dimensional space. The set of generalised coordinates are normally

grouped in a vector q :=
[
q1 q2 · · ·

]ᵀ
. The set of generalized coordinates q is a vector space.

In dynamic systems, the con�guration state of the system is described by generalized co-

ordinates that depend on time q = q(t) =
[
q1(t) q2(t) · · ·

]ᵀ
. For any given dynamic system,

the choice for generalized coordinates is not a trivial problem in general. Usually, the general-
ized parameters are selected so that they are convenient to operate with and make the solution
of the equations of motion of the system easier. This choice is referred to as the canonical
coordinates of the system. If the selected generalized coordinates are independent, then the
number of generalized coordinates is equal to the number of degrees of freedom of the system.

In the unicycle system, the preferred choice of generalized coordinates are two cartesian
coordinates x and y for the position of the system and the absolute angle θ of the unicycle
heading with respect to the x-direction, as shown in Figure 3.2. As explained above, other
generalized coordinates are possible such as those depicted in Figure 3.3. By convention, the
generalized coordinates at Figure 3.2 are normally used in the literature, thus the canonical
coordinates for the unicycle are (x, y, θ).

3.1.2 Problem description by generalized coordinates

The solution proposed in this thesis to solve the problem posed at Section 2.1 can be described by
how generalized coordinates are used. To better understand the problem, here is a reformulation
of the problem description in terms of generalized coordinates.

Given a set of generalized coordinates with unkown interpretation, that is, only the values
are known but how these values are related to the system is unknown, design a set of generalized
coordinates that facilitates controllability of the system and �nd a coordinate transformation
between the given unknown generalized coordinates and the generalized coordinates for con-
trolling the system.

During the remaining of the thesis, the following four sets of generalized coordinates, or
state spaces, will be used:

1. System space: The canonical generalized coordinates. Used to implement simulators only.

2. Sensor space: The generalized coordinates de�ned by the values given by the robot sensors.
The learning controller only has access to this space in order to know the system state.
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Figure 3.4: The unicycle, as studied here, has three generalized coordinates (x, y, θ), correspond-
ing to location and heading, and two control inputs u1 and u2 that correspond to linear speed
and rotational speed, respectively.

Figure 3.5: The unicycle with wheel rotational speed control inputs.

3. Chained-form space: This is a set of generalized coordinates where the state equation of
the system is linear. The transformation from sensor space to chained form, also denoted
as sensorimotor mapping and approximated mapping in this thesis, is the objective of this
research. This space is used because the amount of research about controlling systems in
this form is huge.

4. Time-axis control space: A variation of chained-form space. The generalized coordinates
are the same as chained-form space, but the state equations of the system are modi�ed
as explained in Section 3.1.6 to facilitate the execution of a linear control policy for the
purpose of evaluating the approximated mapping.

Therefore, the four state spaces re�ect the same intrinsic state of the system, but each set of
generalized coordinates serves a di�erent purpose. The following sections describe some of these
state spaces in detail and show how they are applied to the problem of the unicycle.

3.1.3 System space

The generalized coordinates in this space are the canonical coordinates that are used to describe
the dynamic state equations of the system. In the unicycle, the generalized coordinates are x,
y and θ, as depicted in Figure 3.4, and the state equation is

d

dt



x
y

θ


 =




cos θ

sin θ

0


u1 +




0

0

1


u2, (3.1)

with u1 being linear speed input and u2 rotational speed input. Alternatively, a unicycle may
be realized by a two-wheel vehicle as illustrated in Figure 3.5. Then the state equation can
be expressed with reference to the rotational speeds ωl and ωr of the left and right wheels
respeectively, with no change to the generalized coordinates, by transforming the linear and
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rotational speeds

ωl =
1

rl

(
u1 −

L

2
u2

)
(3.2)

ωr =
1

rr

(
u1 +

L

2
u2

)
, (3.3)

where rl and rr are the radii of the left and right wheels, respectively, and L is the distance
between wheels (Figure 3.5). Solving for u1 and u2,

u1 =
(rlωl + rrωr)

L
(3.4)

u2 =
(rlωl + rrωr)

L
. (3.5)

Therefore, the state equation of the unicycle system with wheel rotational speed inputs is

d

dt



x
y

θ


 =




cos θ

sin θ

−1


 rlωl +




cos θ

sin θ

1


 rrωr. (3.6)

This form of the state equation considers di�erent wheel radii, but form (3.1) does not. (3.1) is
generalizable to a two-wheel vehicle with di�erent wheel radii: Taking R := rl/rr as the ratio
between the radii of the left and right wheel,

q̇ =



ẋ
ẏ

θ̇


 =




R+ 1

2
cos θ

R+ 1

2
sin θ

R− 1

2



u1 +




R− 1

2
cos θ

R− 1

2
sin θ

R+ 1

2



u2. (3.7)

By setting R = 1, (3.1) is obtained, as expected.
These equations are not available in the target controller of this thesis and are only used

for analysis of the problem and for realizing simulators.

3.1.4 Sensor space

Sensor space is de�ned as an arbitrary transformation of generalized coordinates that re�ects
the sensor con�guration of a system. The di�erence between sensor space and system space
is just convenience of implementing simulators, because the state equation of a system with
arbitrary choice of generalized coordinates can be complex. Even so, the choice of generalized
coordinates for the sensor space and the choice for the system space might be the same in
many systems, and it depends on the kinematics of the system, the con�guration of the sensors
and the preferences of the designer. In the problem setting that concerns this thesis, only the
sensor space is directly accessible, so the choice of generalized coordinates for the system space
is irrelevant.

3.1.5 Chained-form space

Let q̇ =
[
q1 · · · qn

]ᵀ
be an arbitrary choice of generalized coordinates of a linear dynamic

system that is controlled by input u =
[
u1 u2

]ᵀ
. Then, there is a transformation z = Fq,

where F is a linear transformation matrix, such that the state equation of the system under
generalized coordinates z is in chained form (proof in [9]):

ż = g1(z)u1 + g2u2 (3.8)
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with

g1(z) =




1
0
z2
...

zn−2




and g2 =




0
1
0
...
0



. (3.9)

In the case of the unicycle, a non-linear transformation z = F (q) is necessary. There are
many such transformations, but all of them yield a singularity along at least one direction.
Typically, the following transformation is applied to the canonical coordinates



z1
z2
z3


 =




x

tan θ
y


 (3.10)

and to the control inputs

[
v1
v2

]
=




cos(θ)u1

1

cos2(θ)
u2


 . (3.11)

The singular direction is θ = ±π/2 because the inverse transform of v1 diverges:

u1 =
1

cos(±π/2)v1 =∞. (3.12)

Chained form for the unicycle is then as expected,



z1
z2
z3


 =




1

0
z2


 v1 +




0

1

0


 v2. (3.13)

In this thesis, the transformation function F (q) and the state equation (3.1) are not known to
the learning controller, so from the controller point of view, it is indi�erent which control input
u or v is applied. Actually, for rotations θ ' 0, the transformation is the identity v ' u. This
approximation has a degrading e�ect on the performance of the learning controller. In Chapters
6 and 7 it is shown that the performance is somewhat degraded, but the learning controller can
deal e�ectively with it.

3.1.6 Time-axis control form

Time-axis control form was �rst proposed in [44][45] and reformulated in [26][27]. Despite time-
axis control form not receiving much attention in the literature, it has been applied for adaptive
control strategies[34].

3.1.6.1 De�nition

Time-axis control form is a modi�cation to chained form that simpli�es the control problem
of a linear system with two inputs to a linear system with just one input. Time-axis control
form divides the control problem into two control problems of separate linear systems. The �rst
linear system is given by the state equation

dz1
dt

= µ1, (3.14)
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where the control input µ1 = u1 controls the �rst state variable of chained form. This state
variable replaces the time variable in the second linear system, whose state equation is

d

dz1




zn

...
z3
z2




=




zn−1

...
z2
0




+




0

...

0

1



µ2, (3.15)

where µ2 = u2/u1.

3.1.6.2 Derivation

By applying the chain rule on the time derivative of the generalized coordinates z with respect
to the �rst coordinate z1 in the state equation of a dynamic system,

dz

dt
=

∂z

∂z1

∂z1
∂t

. (3.16)

Analyzing (3.16) component by component and considering the chained form state equation
(3.8), the following equations hold.

For z1,
∂z1
∂z1

∂z1
∂t

=
∂z1
∂t

= u1. (3.17)

Hence, the �rst control input µ1 := u1 in time-axis control form matches the �rst control input
in chained form. For z2,

∂z2
∂z1

∂z1
∂t

=
∂z2
∂z1

u1 = u2, (3.18)

resulting in the second control input µ2 := u2/u1 in time-axis control form. For the remaining
components of z,

∂zi
∂z1

∂z1
∂t

= zi−1u1, (3.19)

so ∂zi/∂z = zi−1 for all i > 2. Summing up, the time-axis control equations for two inputs and
n state variables is

d

dz1




zn

...
z3
z2




=




zn−1

...
z2
0




+




0

...

0

1



µ2 (3.20)

dz1
dt

= µ1 (3.21)

which are precisely (3.15) and (3.14), respectively. Hence, in time-axis control form,
[
τ ζ

]ᵀ
=

[
z1 z2 · · · zn

]ᵀ
and µ =

[
u1 u2/u1

]ᵀ
.

3.1.6.3 Time-axis control form on the unicycle

Positive time values Let us apply the above equations to the state equation of the unicycle
in canonical form. Recall that the unicycle is a non-linear system whose state equation is given
by

d

dt



x
y
θ


 =




cos(θ)
sin(θ)

0


u1 +




0
0
1


u2, (3.22)
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Figure 3.6: A unicycle-like mobile controlled by a linear controller in time-axis space, with ex as
time axis.

where u1 is the linear speed and u2 = θ̇ is the rotational speed, as depicted in Figure 3.6.
The variables ξi are assigned as follows:

ξ =



ξ1
ξ2
ξ3


 =



x
y
θ


 . (3.23)

Now, the state variables are transformed such that

s =



s1
s2
s3


 = f(ξ) =




ξ1
tan(ξ3)
ξ2


 . (3.24)

The control inputs are transformed too:

[
v1
v2

]
= h−1(ξ)u =




cos(ξ3) 0

0
1

cos2(ξ3)



[
u1
u2

]
. (3.25)

Substituting (3.24) and (3.25) into (3.22),

ξ̇ =




ṡ1
ṡ3

ṡ2 cos2(ξ3)


 =




cos(θ) 0

sin(θ) 0

0 1







1

cos(θ)
0

0 cos2(θ)


v. (3.26)

Hence,

d

dt



s1
s3
s2


 =




1 0

tan(θ) 0

0 1


v, (3.27)

so we arrive at the chained form for the unicycle under transformation (3.24):

ṡ =




1

0
s2


 v1 +




0

1

0


 v2 (3.28)

Applying the previously derived equation (3.20), the time-axis control form equations for the
unicycle are:
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Figure 3.7: Reverse displacements are controlled by a simmetric equivalent system where x′ = −x
and θ′ = −θ.

d

dτ

[
ζ3
ζ2

]
=

[
ζ2
0

]
+

[
0
1

]
µ2

dτ

dt
= µ1

(3.29)

where µ1 controls the time variable of (3.29) and µ2 is the input to apply a control law.
The control law is deduced in Section (4.3). Note that positive values of µ1 will make a control
policy converge whilst negative values will diverge.

In the problem setting tackled in this thesis, the transformations from system space to
chained form are not known. Speci�cally, the transformation v = f(u) is unknown, so in order
to simplify the problem, v = u, as will be explained in Section 5.2.

Negative time values Feedback control of 3.29 is only valid for µ1 > 0. However, time-axis
state control often involves forth and back movements to compensate for displacements along
the time axis. A control system that is valid for values µ1 < 0 is required for these control
policies. Here, an equivalent system to 3.29 and compatible with µ1 < 0 is deduced. The basic
strategy is to mirror the whole state space across the time axis, in the case of the unicycle that
would be the x-axis, such that backwards movement in the original system becomes forward
movement in the equivalent system (Figure 3.7).

The process of the previous section is repeated but with a negated x-axis x′ = −x, that is,
ξ′1 = −ξ1. In the problem of the unicycle, the θ state variable is not only a�ected by the mirror
operation, but it is also necessary to consider a 180◦ turn to account for the backwards motion.
Thus, θ′ = (π − θ) − π, so θ′ = −θ, that is, ξ′3 = −ξ3. Consequently, the chained form state
variables are

s′ =



s′1
s′2
s′3


 = f(ξ′) =




−ξ1
− tan(ξ3)

ξ2


 =



−s1
−s2
s3


 . (3.30)

The inputs are also a�ected. Linear velocity is reversed due to the backwards movement, whilst
angular velocity is also reversed due to the symmetry operation across the x axis, so

u′ =

[
u′1
u′2

]
=

[
−u1
−u2

]
. (3.31)

The inputs in chained form are, thus,

[
v′1
v′2

]
=




cos(ξ′3) 0

0
1

cos2(ξ′3)



[
u′1
u′2

]
=



−u1 cos(θ)

−u2
cos2(θ)


 =

[
−v1
−v2

]
. (3.32)
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The state equation in chained form of the equivalent system is

ṡ′ =



−ṡ1
−ṡ2
ṡ3


 =



−1
0
s2


 v1 +




0
−1
0


 v2 =




1
0
s′2


 v′1 +




0
1
0


 v′2. (3.33)

Thus, by transforming the sensor observations with
[
τ ′ ζ′

]ᵀ
=
[
−s1 −s2 s3

]ᵀ
, we get to

a controllable system in time-axis control form,

d

dτ ′

[
ζ ′3
ζ ′2

]
=

[
ζ ′2
0

]
+

[
0
1

]
µ′2

dτ ′

dt
= µ′1

(3.34)

where the actual control inputs are obtained by substituting into the developments from the
previous section:

u =

[
u1
u2

]
=




−µ′1
cos(θ)

−µ′1µ′2 cos2(θ)


 . (3.35)

As mentioned above, this transformation is unknown to the controller, so v = u is con-
sidered, as will be explained in Section 5.2.

3.2 Non-holonomic systems

Non-holonomic systems are a class of dynamic systems which have constraints about which
values their general coordinates can take or about the evolution of these values in time. When
a system is non-holonomic, it is not possible to apply Langrangian mechanics, which are based
on energy considerations as opposed to forces, to solve the dynamics of the system. Control of
these systems becomes more di�cult, and are often non-linear, compared to holonomic systems.
In this section, non-holonomic systems are characterized.

3.2.1 Holonomic constraints

When the selection of generalized coordinates is redundant, that is, there are more coordinates
than the strictly minimum required to describe the con�guration state of the system, then
some of the coordinates are dependent on the others and on time. This dependency is termed
a constraint on the system. There are many ways to categorize constraints. Here, we focus
on the categorization that distinguishes holonomic constraints and non-holonomic constraints.
The importance of this categorization is that holonomic constraints indicate redundancy of
generalized coordinates, whilst non-holonomic constraints indicate limitations inherent to the
structure of the problem. In other words, a holonomic constraint indicates that the choice of
generalized coordinates is not minimal and that a more concise set of generalized coordinates
is possible.

A holonomic constraint is a constraint that obeys the general equation

f(q1, · · · , qn, t) = 0. (3.36)

for some choice of generalized coordinates q =
[
q1 · · · qn

]ᵀ
. A holonomic system is a dynamic

system whose constraints are all holonomic. That is, the constraints of a holonomic system all
depend merely on the values of the generalized coordinates and on time. The de�nition of
holonomic system is independent of the choice of generalized coordinates because as long as the
constraint can be expressed as (3.36) in some choice of generalized coordinates, the constraint
is holonomic.
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Figure 3.8: The rigid body in space has a minimum of 6 states. Canonically, these are the three
cartesian coordinates of the centroid and three angle coordinates.

Figure 3.9: The state of the rigid body can be represented with redundant generalized coordinates
by the cartesian coordinates of three points.

For example, consider a rigid body B in free space (Figure 3.8). The number of degrees of
freedom is 6: three for position (x, y, z) and three for rotation (θ, ψ, φ). Therefore, the minimal
set of generalized coordinates has six parameters, for example

qB = (x, y, z, θ, ψ.φ), (3.37)

and no constraints. A rigid body in free space may also be described with the location of three
�xed points p1 = (x1, y1, z1), p2 = (x2, y2, z2) and p3 = (x3, y3, z3), as shown in Figure 3.9.
Then, the system is de�ned by nine generalized coordinates

q′B = (x1, y1, z1, x2, y2, z2, x3, y3, z3) (3.38)

and the constraints imposed by the rigid body, which are constant distance between points in
the rigid body:

‖p1 − p2‖ − d12 = 0 (3.39)

‖p1 − p3‖ − d13 = 0 (3.40)

‖p2 − p3‖ − d23 = 0. (3.41)

The choice q′B of generalized coordinates consists of nine parameters and three holonomic
constraints, which, when substracted to each other, results in the six degrees of freedom of the
rigid body.

3.2.2 Non-holonomic constraints

A non-holonomic constraint is a constraint that is not holonomic (!). A non-holonomic system is
a dynamic system that has non-holonomic constraints. So, if a constraint cannot be expressed
as (3.36) in any choice of generalized coordinates, then the constraint is non-holonomic. A
dynamic system with at least one non-holonomic constraint is a non-holonomic system. An
example of a non-holonomic constraint is that whose equation is de�ned by an inequality:

f(q1, · · · , qn, t) ≥ 0. (3.42)
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Figure 3.10: The non-holonomic constraint in the unicycle obeys the Pfa�an-form equation
tan(θ)ẋ− ẏ = 0.

Non-holonomic constraints of this kind can be solved by partitioning the problem into two.
Firstly, when f(q1, · · · , qn, t) > 0 (note there is no equality), the system is equivalent to one
without the constraint. Secondly, when f(q1, · · · , qn, t) = 0, the constraint is holonomic and
thus reducible. Therefore, solving for these kind of non-holonomic systems is equivalent to
solving two other systems, one without the constraint and another with a holonomic constraint.

Another example of non-holonomic constraint is any de�ned by

f(q1, · · · , qn, q̇1, · · · , q̇n, t) = 0. (3.43)

Sometimes, despite a constraint is expressed with �rst derivative parameters as in (3.43), it is
still a holonomic constraint. It is only when (3.43) cannot be transformed to a constraint in the
form of (3.36) that it is a non-holonomic constraint. Often, (3.43) only needs to be integrated
with respect to time to show that the constraint can be expressed with (3.36), thus if (3.43)
can be integrated, then it is a holonomic constraint.

The kind of non-holonomic constraint dealt with in this thesis is of the �rst derivative kind
(3.43). More speci�cally, with non-holonomic constraints in Pfa�an form:

A(q)q̇ = 0. (3.44)

If the constraint is a true non-holonomic constraint, these kind of constraints are characterized
by di�erent integral values depending on the integration trajectory. So the reason why it is a
non-integrable constraint is because a unique integral does not exist and it cannot be converted
to (3.36).

3.2.3 The unicycle as a non-holonomic system

The unicycle is a non-holonomic system with three degrees of freedom and one non-holonomic
constraint (Figure 3.10). The canonical generalized coordinates are



q1
q2
q3


 =



x
y

θ


 . (3.45)

The lateral movement in the unicycle is restricted, which is expressed in the form of a non-
holonomic constraint of the �rst derivative kind in Pfa�an form (3.44),

arctan
ẏ

ẋ
= θ ⇒ tan(θ)ẋ− ẏ = 0. (3.46)

This constraint is not integrable because, considering two di�erent integral trajectories X1 and
X2, ∫

X1

(
dy(x)

dx
− tan θ

)
dx 6=

∫

X2

(
dy(x)

dx
− tan θ

)
dx, (3.47)

so the unicycle is indeed a non-holonomic system.



Chapter 4

Methods and application to the

unicycle

This chapter describes some general concepts and methods that are well known in the �eld
of robotics and are used as mathematical tools in later chapters. Firstly, the derivation of
the Jacobian of the sensor space with respect to the control inputs is derived from the state
and output equations. Secondly, the method of function approximation used for the learning
algorithm in Chapter 5 is described. Then, the control policy, which is based on linear state-
space control, used for evaluating the method is presented.

4.1 Jacobian

As explained in Section 3.1.4, sensor space corresponds to the state space of the transformation
of generalized coordinates given by the output equation (2.2) s = H(q). The state equation in
sensor space is obtained by deriving (2.2) with respect to time:

ṡ =
ds

dt
=
∂H(q)

∂q
q̇

(2.1)
=

∂H(q)

∂q
F (q)u. (4.1)

Since the kinematics F and the sensor con�guration H are unknown, they can be grouped to
a single unknown factor

J(q) :=
∂H(q)

∂q
F (q), (4.2)

which is de�ned as the Jacobian of the generalized coordinates given by the sensor outputs with
respect to the control input u. Because s and q are assumed isomorphic (Section 2.1), q can
be replaced with s in (4.2). Thus, the state equation of a dynamic system in sensor space is

ṡ = J(s)u, (4.3)

with the Jacobian J unknown. Designing a controller for (4.3) requires having a model of J(s).
This thesis proposes an approach to obtain J(s) automatically under the problem settings
described in Section 2.1.

4.2 Function approximation by Least Squares of Gaussian

Radial Basis Functions

The proposed method uses Gaussian RBF [22] for approximating the sensorimotor mapping
from sensor space to chained-form space. In this section, f refers to the approximated function
and φk refers to the Gaussian kernel at point k.

23



CHAPTER 4. METHODS AND APPLICATION TO THE UNICYCLE 24

Figure 4.1: Example of a function approximation with unregularized Gaussian radial basis func-
tions. Input data, coe�cient values θ of the kernels, and the plot of the approximated function
are represented.

Description Constant Index letter

Number of components of a state vector D i ∈ {1, . . . , D}
Number of entries in the dataset N j ∈ {1, . . . , N}

Number of basis P k ∈ {1, . . . , P}

Table 4.1: Meaning of variables derivation of in Gaussian RBF

4.2.1 Description

Function approximation is the process of inferring a limited set of parameters, which collectively
de�ne a function f , from a set of pairs of values (x, y), called the training dataset, such that
f(x) is as close as possible to y for every pair (x, y) in the dataset (Figure 4.1). There are
many ways to perform function approximation. Here the least squares regression1 by linear
combination of Gaussian radial basis functions (Gaussian RBF) is described and implemented,
with multidimensional x and unidimensional y.

Let {(xi, yi)|i ∈ {1, . . . , N}} be a dataset of pairs of values with N components (points),
where xi ∈ RD is the input vector and yi ∈ R is the expected output. D is the dimension
of the input vector. The objective is to �nd a function f : RD −→ R that approximates the
unknown underlying relation between xi and yi over all the dataset.

4.2.2 Mathematical derivation

The convention for the variables used in this section is indicated in Table 4.1. A Gaussian
kernel φk with center in bk ∈ RD is de�ned as (Figure 4.2)

φk(x) :=
1

σ
√

2π
exp(−‖x− bk‖

2

2 · σ2
). (4.4)

1Risi Kondor (2004) Regression by Linear Combination of Basis Functions.
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Figure 4.2: Plot of Gaussian kernel φ(x) centered in x = 0 and standard deviation σ = 1 for
x ∈ R (above) and x ∈ R2 (below).

f is the function approximation using a linear combination of Gaussian kernels with centers

at
[
b1 · · · bP

]
:

f(x) =

P∑

k=1

θkφk(x). (4.5)

In this regression problem, the parameters θ = [ θ1 θ2 · · · θP ]ᵀ are calculated using
least squares on f(x). Generally, there would be an additional term θ0φ0(x) where φ0(x) = 1
is the bias term. Here, the approximation f has no bias, i.e. θ0 = 0. To calculate θ, it is
assumed that the problem is not underspeci�ed, that is, there are at least as many data points
as basis functions N ≥ P . θ is solved by de�ning a loss function and then minimizing it. For
each dataset point (xi, yi), the loss function is

Lj(yj , f(xj)) :=
1

2
(yj − f(xj))

2, (4.6)

and the total loss function is

L(θ) =

N∑

j=1

Lj(yj , f(xj)) =
1

2

N∑

j=1

(yj−
P∑

k=1

θkφk(xj))
2. (4.7)

The minimum of this multivariate function is found where the gradient is 0: ∇θL = 0. Let

us calculate the gradient component-wise
∂L

∂θg
= 0, where g ∈ {1, . . . , P}:

∂L

∂θg
=

1

2

N∑

j=1

2

(
yj−

P∑

k=1

θkφk(xj)

)
φg(xj) = (4.8)

=



N∑

j=1

φg(xj)yj−
N∑

j=1

φg(xj)
P∑

k=1

θkφk(xj)


 = 0. (4.9)
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In matrix form,

[
φg(x1) · · · φg(xN )

]



y1

...
yN


−

−
[
φg(x1) · · · φg(xN )

]




[
φ0(x1) · · · φP (x1)

]
·




θ1

...

θN




...

[
φ0(xN ) · · · φP (xN )

]
·




θ1

...

θN







= 0. (4.10)

Let us now de�ne

Q(x1, . . . ,xN ) :=




φ0(x1) · · · φP (x1)

...
. . .

...

φ0(xN ) · · · φP (xN )


 , (4.11)

θ :=




θ1

...

θN


 , (4.12)

and consider the multivariate case for y:

y :=




y1

...
yN


 . (4.13)

Note that xi is a row vector with D elements but y is a column vector of N components. All
components of ∇θL may be grouped into a single matrix equation

∇θL =




∂L

∂θ0

...

∂L

∂θP




= Qᵀy −QᵀQθ = 0. (4.14)

Assuming that the points of the dataset and the basis are unique, then Q has rank P . Hence,
QᵀQ is invertible because N ≥ P , so

θ = (QᵀQ)−1Qᵀy. (4.15)

Therefore, the approximated function is:

f(x) =
[
φ0(x) · · · φP (x)

]
θ = Q(x)θ. (4.16)
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Figure 4.3: Basis theta values over�tting example in a function approximation from R2 to R.
The underlying function maps each (x, y) belonging to the blue grid to a random value between
−1 and 1. The red circles are the values of the θk coe�cients at their respective basis point and
the orange lines are the projections onto the resulting approximated function.
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A common problem in all function approximation methods is over�tting. Gaussian RBF
is no exception to this problem (See Figure 4.3). Over�tting occurs when the approximated
function has a good �t of the training data points, but its accuracy is poor at any other
point. For example, an approximation that models small stochastic deviations is not desirable
because it misses the smoothness of the underlying process. In such cases, a term that penalizes
complexity is added to the function approximation. This way of mitigating over�tting problems
is called regularization.

In Least Squares, the so-called L2 regularization method penalizes the absolute value of the
parameters θ by adding the squared sum of the parameters to the loss function, which becomes

L2(θ) = L(θ) +
λ

2
‖θ‖2 , (4.17)

where λ ≥ 0 is a parameter that controls the amount of regularization. The new term is
carried along the calculation of the gradient:

∂L2

∂θg
=
∂L

∂θg
+ λθg. (4.18)

Thus,

∇θL2 = ∇θL+ θ = Qᵀy −QᵀQθ + λθ = 0 (4.19)

Solving for θ,
θ = (QᵀQ− λI)−1Qᵀy (4.20)

As can be easily deduced from the previous equation, the greater the value of λ is, the
smaller the parameters θ become, with λ = 0 having no regularization and λ→∞ taking the
parameters to the trivial solution θ = 0, therefore f(x)=0.

4.2.3 Analysis of Gaussian-RBF parameters

Figure 4.4 shows a comparison of the approximated function by Gaussian RBF under di�er-
ent values of standard deviation σ and regularization parameter λ, in the case where all the
data is interpolated. Figure 4.5 shows the same comparison, but the base span is smaller so
some portions of the approximated function is extrapolated. In both cases, low values of the
regularization term produces high variations in the value of the θk coe�cients, which is even
more noticeable with higher values of σ. A good value of λ seems to be between λ = 0.5 and
λ = 1. On the other hand, small values of σ, that is, smaller than around half the distance
between bases, result in poor approximation between the kernels, because the kernels are not
width enough to cover these spaces, unless the values of the θk coe�cients are very large and
the error at the center of the kernels becomes even larger. Larger values of σ seem to have an
e�ect in regions where there are already other kernels, so it is not desirable either because of
the seemingly arbitrary values of the resultant φk. The optimum value for σ will depend on
each speci�c function being approximated. In general, values between σ = 0.5d and σ = 1d,
with d being the distance between bases, yield the most accurate approximations.

4.3 State-space control of time-axis control form

In this section the mathematical derivation of the control law applied to a linear system is
deduced from state-space control theory[9]. This control law is to be applied to the control-
state part of the time-axis state equations (3.15).
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Figure 4.4: Analysis of the λ parameter in function approximation method by Gaussian RBF
when all the data is bound to the RBF bases.
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Figure 4.5: Analysis of the λ parameter in function approximation method by Gaussian RBF
when some of the data is not bounded by the RBF bases.

Figure 4.6: Graphical representation of a linear system.
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Linear systems

The state and output equations for a linear system, depicted in Figure 4.6, are

{
ẋ = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t).
(4.21)

where x =
[
x1 x2 · · · xn

]ᵀ
is the state vector and u is the input vector. Considering

that A is constant ( A 6= A(t) ), the solution to this system under null input u = 0 is the
transition equation

x = x0e
A(t−t0). (4.22)

x is controllable if the gramian controllability matrix

Q =
[
B AB A2B · · · AnB

]
(4.23)

is rank n := dim(x). Now, the general expression for a univariate system under Laplacian
transform is

y =
bns

n + . . .+ b1s+ b0
sn + . . .+ a1s+ a0

u, (4.24)

which may be expressed in phase variables by choosing the �rst state variable

x1 =
1

sn + an−1sn−1 + . . .+ a0
, (4.25)

and the rest of the variables
x2 = ẋ1
x3 = ẋ2

...
xn = ẋn−1.

(4.26)

This is the state equation (4.21) in phase variables. Matrix-wise, (4.21) is expressed in phase
form with

A =




0 1 · · · 0

0 0
. . .

...

...
. . . 1

0 1
−a0 −a1 · · · −an−2 −an−1




; B =




0

0

...

0

1



. (4.27)

Design of the feedback loop

Considering that the characteristic polynomial of the system is

pr(s) = sn + an−1s
n−1 + . . .+ a1s+ a0, (4.28)

and that the desired characteristic polynomial of the system without feedback loop is

pr(s) = sn + αn−1s
n−1 + . . .+ α1s+ α0, (4.29)

a state-feedback loop is added to the system with coe�cients

K =
[
k1 k2 . . . kn

]
. (4.30)

The block diagram of the original system with a state-feedback control loop is shown in Fig-
ure 4.7. Operating with matrices, an equivalent system is obtained that has the form of the



CHAPTER 4. METHODS AND APPLICATION TO THE UNICYCLE 32

Figure 4.7: Feedback control loop (dashed lines) attached to the linear system.

Figure 4.8: Graphical representation of the feedback-controlled linear system converted into the
canonical representation.

canonical state and output equations (4.21), as depicted in Figure 4.8:

{
ẋ = Ar(t)x(t) +B(t)u(t)

y(t) = Cr(t)x(t) +D(t)u(t).
(4.31)

where
Ar := A+BK, (4.32)

and

Cr := C +DK. (4.33)

The design of the feedback loop is not a�ected by the output equation, so the output
equation is dropped. Simplifying Ar,

Ar =




0 1 · · · 0

0 0
. . .

...

...
. . . 1

0 1
−a0 −a1 · · · −an−2 −an−1




+




0

0

...

0

1




[
k1 k2 · · · kn

]

=




0 1 · · · 0

0 0
. . .

...

...
. . . 1

0 1

k1 − a0 k2 − a1 · · · kn−1 − an−2 kn − an−1




.

(4.34)
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Therefore, calculating the characteristic polynomial of Ar and equalizing to pr(s), the fol-
lowing set of simultaneous equations of order n is obtained:

ai−1 − ki = αi−1. (4.35)

Solving for ki, the input

u(t) =
[
k1 k2 · · · kn

]
x(t) (4.36)

is applied on the original system (4.21), with ki = ai−1 + αi−1. This way the system has the
dynamic behavior as desired at (4.29).

Application to the time-axis control form of the unicycle

The state equation for the unicycle in time-axis control form (3.20) is, considering µ1 >0:

d

dt

[
z3
z2

]
=

[
0 1
0 0

] [
z3
z2

]
+

[
0
1

]
µ2. (4.37)

The controllability gramian yields a controllable system:

Q =
[
B AB

]
=

[
0 1
1 0

]
. (4.38)

The feedback loop constants are K =
[
k1 k2

]
, hence

Ar =

[
0 1
0 0

]
+

[
0
1

] [
k1 k2

]
=

[
0 1
k1 k2

]
. (4.39)

The desired characteristic polynomial is

pr(s) =

(
1

(s− p1)(s− p2)

)−1
=

(
1

s2 − (p1 − p2)s+ p1p2

)−1
. (4.40)

Equalizing to the characteristic polynomial of Ar and solving for K,

α0 = p1p2
α1 = −(p1 + p2)

, (4.41)

which results in
k0 = p1p2
k1 = −(p1 + p2)

. (4.42)

Therefore, the feedback system becomes

d

dt

[
z3
z2

]
=

[
0 1

−p1p2 p1 + p2

] [
z3
z2

]
, (4.43)

and the desired input is

µ1 > 0

µ2 =
[
k1 k2

] [z3
z2

]
= −p1p2z3 + (p1 + p2)z2.

(4.44)

For negative time scales µ1 < 0 (Section 3.1.6.3), the control policy becomes

µ′1 = −µ1

µ′2 = −(p1 + p2)z2 − p1p2z3 . (4.45)

Similarly to the equations for positive time scales, the control policy is only valid for µ′1 > 0,
that is, µ1 < 0.



Chapter 5

Learning algorithm

This is the core chapter of the thesis. It contains the main contributions of the research, which
are the theoretical developments that follow.

The learning algorithm of sensorimotor mapping is divided in two parts, or stages. The
�rst stage deals with the manoeuvrability of the robot. During this stage, the Jacobians of the
system around the initial position are explored. The initial position of the system is selected by
the designer or operator of the robot. This position is considered the origin in chained-form state
space. The behavior of the Jacobian with respect to the control inputs is analyzed and a virtual
input is constructed, such that the virtual input e�ectively moves the robot in the forbidden
direction of the non-holonomic constraint. The second stage deals with the exploration of the
sensor space with the purpose of constructing a dataset to calculate an approximated function
between the sensor mapping and some generalized coordinates in chained-form.

Intuitively, the �rst stage is akin to obtaining the kinematics of the robot, whilst the second
stage resembles learning of the sensor con�guration, yet both remain entangled as a single
unknown for the controller.

5.1 Stage 1: Virtual input

In this section, the �rst stage of the learning algorithm is described. In this stage, the proposed
controller learns e�cient patterns to navigate the sensor space, despite the non-holonomic
constraints. It is necessary that the controller learns how each control input a�ects the sensor
observations to maximize mobility. Nevertheless, in the unicycle example, there are only two
control inputs for three degrees of freedom, so a method to navigate the third degree of freedom
is required. This section describes how to design a virtual control input u(3) that maximizes
movement along this third degree of freedom, which corresponds to the forbidden direction
imposed by the non-holonomic constraint, while minimizing variations of the sensor observations
along the directions immediately controllable by the two regular control inputs u(1) and u(2)

at the initial state.

5.1.1 Jacobian

The �rst step is to retrieve the Jacobians (Section 4.1) of the system.

Let p be the state of the system, identi�ed by sensor observation s(p) ∈ R3. Let ṡ
(p)
(ϑ) be

the derivative of the sensor with respect to time when the system is applied control input u(ϑ),

with ϑ ∈ {1, 2}, u(1) =
[

1 0
]ᵀ

and u(2) =
[

0 1
]ᵀ
, as described in Section 2.1. Then, the

34
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Figure 5.1: Starting from the sensor observation at s(i), two more sensor observations are required
to obtain the Jacobian at s(i), one for each control input.

Jacobian for the unicycle (Section 2.2) is

J :=
∂ṡ

∂u

∣∣∣∣
n×m

=




∂ṡ1
∂u1

∂ṡ1
∂u2

∂ṡ2
∂u1

∂ṡ2
∂u2

∂ṡ3
∂u1

∂ṡ3
∂u2




=
[
j1 j2

]
. (5.1)

The state equation of the system in sensor coordinates at state p is

ṡ
(p)
(ϑ) = g(s(p))u(ϑ) = g1(s(p))u(ϑ),1 + g2(s(p))u(ϑ),2. (5.2)

Considering control input u = τ1u(1) =
[
τ1 0

]ᵀ
, then ṡ

(p)
(1) = g1(s(p))τ1 so

∂ṡ
(p)
(1)

∂u
=

∂

∂u
g1(s(p))u1 +

∂

∂u
g2(s(p))u2 = g1(s(p))

∂u1
∂u1

=
ṡ(p)

τ1
≈ ∆s(p)

τ1∆t
. (5.3)

Similarly for u = τ2u(2) =
[
0 τ2

]ᵀ
and substituting for ṡ

(p)
(2), we have that

J (p) =
[
j
(p)
1 j

(p)
2

]
=

[
∂ṡ(p)

∂u1

∂ṡ(p)

∂u2

]
≈
[

∆s
(p)
1

τ1 ∆t

∆s
(p)
2

τ2 ∆t

]
, (5.4)

which is the formula for retrieving the approximated Jacobian of the system at state p with
discrete sensor observations (Figure 5.1). Thus, the Jacobian is obtained by retrieving three
sensor observations: At state s(p) and at state s(p) after applying a brief input u(ϑ) to the
system for every input ϑ ∈ {1, 2}. After every movement, the system must backtrack the control
inputs by applying −u(ϑ) for the same amount of time. This action nulli�es the possible e�ect
of trajectory history in the calculation of the state of the system after retrieving the Jacobian.

The procedure to design the virtual input continues by retrieving the Jacobian at periodic
intervals along the trajectory de�ned by applying control input u(ϕ) for each ϕ, starting from

the initial state s(0), as depicted in Figure 5.2. The goal is to �nd a state s(?) whose Jacobian

J (?) contains a component j
(?)
ψ with ψ ∈ {1, 2} such that

det

[
j
(0)
1 j

(0)
2 j

(?)
ψ

]
= ±1, (5.5)

assuming that the Jacobians are normalized. Then, the input u(ψ) applied at state s(?) is the

forbidden direction by the non-holonomic constraint. Therefore, the optimal value of j
(?)
ψ in



CHAPTER 5. LEARNING ALGORITHM 36

Figure 5.2: The Jacobian is obtained at several points along the axis de�ned by each control

input at s(0) in search for the most orthogonal Jacobian component j
(?)
ψ at s(?).

(5.5), considering discrete sensor observations and �nite number of Jacobians, is given by

(s(?), ψ) = arg max
s(p),i∈{1,2}

∣∣∣det
[
j
(0)
1 j

(0)
2 j

(p)
i

]∣∣∣ . (5.6)

s(?) and ψ are the necessary data to construct the virtual input.

5.1.2 Construction of virtual input

Let u(s(?)) be the control input required to take the system from state s(0) to s(?) and ∆t(s(?))
the time required to reach s(?). Then, the virtual input u(3) is de�ned as the sequence of inputs

u(3)∆t⇐⇒ u(?)∆t(?); u(ψ)∆t; −u(?)∆t(?). (5.7)

Virtual input u(3) e�ectively moves the non-holonomic system in the forbidden direction as if
the non-holonomic constraint did not exist. We will use inputs u(1), u(2) and virtual input u(3)

to navigate the sensor space freely in the next stage. Conceptually, it is similar to a holonomic
system with an additional input.

5.2 Stage 2: Exploration of sensor space

In this stage, the learning controller explores the sensor space by applying control inputs to
obtain a dataset for function approximation from sensor space to chained-form space, where
the system can be feedback controlled.

5.2.1 Sensor space data sampling

Since the trajectory of non-holonomic systems depends on the history of the control inputs, the
sensor space may not be explored randomly. There must be some rule to the applied inputs such
that the learning controller can assure that the state in chained form remains consistent with
the sensor observations. In other words, the sensor observations will always be trustworthy with
respect to the state of the system, but the equivalent state in chained-form will be incoherent
unless the sensor space is explored systematically. The reason is that with arbitrary control
inputs, it is possible that by applying the same control inputs to the chained-form equivalent
system as the ones applied to the actual system, then the same sensor observation is mapped to
many states in chained form, or conversely, many sensor observations end up being mapped to a
single state in chained form. In these cases, the mapping between sensor space and chained-form
control space is not isomorphic and hence the method cannot provide reliable sensor readings
for feedback control.

With that in mind, the rules for sensor exploration are
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Figure 5.3: Example of �xed pattern of exploration of sensor space during stage 2. In this
example, u(3) is applied �rst, then u(1) and u(2), each of them in a loop to explore the sensor
space systematically.

� The starting position is arbitrary inside the region of exploration and it is decided by the
operator.

� The system must backtrack all its movements to the starting position during learning.

� In order to reduce the cumulative errors of the actuators, applying the virtual input should
be minimized because this control input is a sequence of other control inputs.

� The system may only be controlled with pure control inputs, that is, only a single element
in u =

[
u1 u2

]ᵀ
may be non-zero at any given time.

Guided by these rules, the following algorithm was developed.

loop ∆t1 : 0 . . .∆T1
apply input u(3) for ∆t1;
loop ∆t2 : 0 . . .∆T2

apply input u(ψ) for ∆t2;
loop ∆t3 : 0 . . .∆T3

apply input u(s(?)) for ∆t3;

dataset ← dataset ∪ (s, (u(3);u(ψ);u(s(?))));

backtrack u(s(?));

backtrack u(ψ);

backtrack u(3);
Algorithm 1: Pseudo code for sampling the sensor space. u(ψ) and u(s(?)) correspond to
the inputs obtained in Section 5.1.

Figure 5.3 shows an example of exploring a sensor space where each axis represents a control
input, i.e. when a control input is applied, it is shown as a movement along the corresponding
axis.

5.2.2 Function approximation

After exploration of the sensor space by �xed pattern, the dataset {(si, zi)} is available, where
i ∈ [1, . . . , N ], N is the number of sensor observations si and zi is the state of the equivalent
system in chained-form. The mapping

z = φ(s) =




φ1(s)

φ2(s)

φ3(s)


 (5.8)

is inferred from the dataset {(si, zi)} by Gaussian RBF as described in Section 4.2.
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The number of kernels should not be greater than the number of sensor observations to
avoid problems related to underspeci�cation. Since the sensor space is sampled by following
a grid, the number of kernels in each dimension is chosen to be at most the number of sensor
observations in the corresponding dimension. For example, if 5 sensor observations are taken in
each dimension of the unicycle system, the number of kernels should be at most 5×5×5 = 125.
The selection of the location of the kernels follows a lattice in sensor space. The size of the
lattice is the same as the smallest cube or hypercube that encloses all the sensor observations.

At this point, the learning process is �nished. The system should be linearly controllable in
the regular regions (i.e. not singular, Section 3.1.5) if the method was successful. The linear
controller ϕ acts on the equivalent system on chained-form, so it must use the transformed
sensor observations:

u = ϕ(φ(s)). (5.9)

For evaluation purposes of the validity of φ, the linear controller described in Section 4.3 is used
in this thesis, but any other linear controller should be equally valid.



Chapter 6

Simulation

The approach described previously was developed and tested in a simulated environment under
the Matlab toolset1. In this chapter, the architecture and code of the implementation of the
approach are described in detail, followed by the exposition and analysis of the results of the
simulated experiment.

6.1 Implementation

There are two directories used in the Matlab implementation: matlab and matlab/Ortho-
gonal_spaces, where there is the Matlab source code for the simulation and some other auxiliary
source code �les written during the development of the implementation. The �nal source �les
and their relation are shown in the communication diagram of Figure 6.1.

The most important �le of the implementation is the script showcase.m, which controls the
�ow of the simulation and dispatches calls to the rest of the functions. unicycle.m hosts the
simulated system in a Matlab object, ensuring that the internal state of the unicycle is not
accessible by the controllers. The execution �ow of showcase.m goes over the following points,
in the same order:

1. Initialization of parameters, auxiliary variables, and con�guration values.

2. Calling max_orth(), which handles the �rst stage of the method. max_orth() explores
each axis separately, samples di�erential sensor readings to obtain the Jacobian at each
point, and calculates the optimum values for u(s(?)) and ∆t(s(?)) of the virtual input u3.

3. Calling xplr_axis() to obtain the �xed sequence of inputs necessary to explore the sensor
space, based on the output of max_orth().

4. Looping over each input recursively as indicated by xplr_axis(), including the virtual in-
put, and storing the sensor observation values and the state values of the system, assumed
in chained form, in a dataset.

5. Obtaining the set of points of a grid in sensor space that will be used to locate the
kernels of the Gaussian RBF by calling basis_grid(). The size of the grid depends on the
maximum and minimum values of each dimension in the dataset. Therefore, the bases are
placed in a three-dimensional grid that extends to the smallest box containing all data in
sensor space.

6. Calling gaussian_RGB(), where the function approximation by least squares is computed
on the dataset obtained previously. gaussian_RGB() returns φ as a function object. φ
should be called with one or more sensor observations and it returns the approximated
values in chained-form space.

1https://www.mathworks.com/

39
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showcase.m

unicycle.m

max_orth.m

1 : Initialize for learning

2 : obtain virtual input

xplr_axis.m

34 : get fixed policy

basis_grid.m

gaussian_RBF.m

5 : calculate bases

3

6 : calculate phi

7 : Initialize for test

jacb_state_eq.m

*

3 : retrieve Jacobian

8 : apply_input

9 : show_trajectory

Figure 6.1: UML communication diagram of MATLAB implementation for simulation. Calls to
unicycle .apply_input() in the learning stages have been omitted.
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Figure 6.2: Conventions for dimensions in Gaussian_RBF() internal variables. The cube repres-
ents a N × P ×D = 2 × 4 × 3 multidimensional matrix. N : Number of entries in the dataset.
P : Number of bases. D: Number of components in the state of the system.

7. Setting up another unicycle object with a di�erent initial state, but same motor and
sensor con�guration.

8. The new unicycle system is feedback controlled by time-axis control method usingthe
previously computed φ.

9. Finally, the trajectories followed by the unicycle are plotted and the intermediate vari-
ables, dataset and other auxiliary data are stored in Matlab global workspace.

As well as for the simulation, Matlab was used to develop and test the methods of this research.
Particularly, the most time-consuming developments in Matlab other than the simulation were
the analysis, extension and test of the seminal implementation in the initial stages of this
research, and the implementation, test and analysis of the function approximation algorithm
by Gaussian RBF, which resulted in the addition of the regularization coe�cient as described
in Section 4.2.2, to solve issues with over�tting.

The implementation of the function approximation algorithm will be described in more
detail due to its complexity.

Implementation of approximated function by Gaussian RBF

The function approximation by least squares of Gaussian RBF implemented in Matlab oper-
ates with three-dimensional matrices to simplify the code. Each dimension of these matrices
conveniently index each of the 3 ranges {1, . . . , N}, {1, . . . , P} and {1, . . . , D}, as shown in
Figure 6.2. The constants N , P , and D correspond to the number of entries in the dataset, the
number of bases and the number of components, respectively. The input arguments need to
be converted to this multidimensional convention before operating with them. The output of
the function is a function reference to the approximated function as a lambda object and ready
to be used. The implementation is found in the �le gaussian_RBF.m in the form of a Matlab
function.

1 funct ion [ f , t h e t a ] =
2 gaussian_RBF ( X_tra in ing , Y_data , X_basis , sigma , lambda )
3

4 N=s i z e ( X_tra in ing , 2 ) ;
5 P=s i z e ( X_basis , 2 ) ;
6 D=s i z e ( X_tra in ing , 1 ) ;

There are 5 input arguments which are described here in detail. The convention applied is that
the �rst dimension (rows) is used for the components of the vector and the second dimension
(columns) is used for the data points. Therefore, a column vector represents the state at one
point, whilst a row vector represents one of the state components at several points.

X_training The input component xj of the training dataset {(xj , yj)} at point j. The size of
this matrix is D ×N .

Y_training The output component yj of the training dataset {(xj , yj)} at point j. This matrix
is a row vector 1×N .
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X_basis The location of the bases. Same format as X_training, but size is D × P .
sigma The standard deviation σ for all bases.

lambda The parameter λ used in regularization. Use lambda = 0 for no regularization.

The conventions for the matrix dimensions used internally di�er from the conventions for the
arguments because matrix manipulation becomes easier. Thus, before any operation the argu-
ments should be transformed to the internal convention. Internally, the matrix dimensions are
N × P ×D (N × 1× 1 for the training dataset Y):

1. (Row vectors) Data points.

2. (Column vectors) Basis points.

3. (Depth vectors) Vector components.

Unfortunately, the original and desirable version of the code for function Q(x1, . . .), which is

1 % var_X=syms ( 'X ' , [N P D ] ) ;
2 % Q(var_X) = exp ( −1/(2* s igma )
3 * sum( ( permute ( var_X , [ 2 3 1])−B) .^2 ,3 ) ) ;

cannot be used due to Matlab limitations in using symbolic values for multi-dimensional
matrices. Alternatively, the following permutations are applied to the inputs to circumvent
the need for symbolic variables.

1 X = permute ( X_tra in ing , [ 2 3 1 ] ) ;
2 B = permute ( X_basis , [ 3 2 1 ] ) ;
3 Y = Y_data ' ;

Additionally, X and B are replicated in their respective unused dimensions to automate the
calculations with matrix operators only.

1 X = repmat (X, 1 ,P , 1 ) ;
2 B = repmat (B, N, 1 , 1 ) ;

With this transformation of the inputs, the equations (4.4), (4.11) and (4.20) can be coded
directly: Q is calculated, which results in a N × P matrix that matches the dimensions of the
theoretical development, and the result is used to calculate the linear parameters θ. theta has
dimensions P × 1, as expected. The regularization parameter λ is also applied in this step.

1 Q = exp ( −1/(2* s igma ^2) * sum ( (X−B) .^2 , 3 ) ) ;
2 t h e t a = (Q'*Q + lambda*eye ( s i z e (Q, 2 ) ) ) \Q' * Y;

This concludes the calculation of the θ coe�cients, but gaussian_RBF.m can be made easier
for users if an actual function is returned, rather than just the coe�cients.

Therefore, the lambda function that will hold the approximation is de�ned and returned.
The arguments and output matrices of f follow the same conventions used for the input argu-
ments of gaussian_RBF(), so Q needs recalculation every time that the approximated function
is called to take the input format into account. The transformations are the same as above.

1 funct ion q=Q_f( var_x )
2 N=s i z e ( var_x , 2 ) ; % Not the same N as above .
3 X = permute ( var_x , [ 2 3 1 ] ) ;
4 X = repmat (X, 1 ,P , 1 ) ;
5 B = repmat ( preb , N, 1 , 1 ) ;
6 s = zeros ( s i z e (X ( : , : , 1 ) ) ) ;
7 f o r i =1:D
8 s = s + ( X ( : , : , i )−B( : , : , i ) ) . ^ 2 ;
9 end

10 q = exp (−1/(2* s igma ^2)* s ) ;
11 end
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Finally, (4.5) is generalized to N input vectors and a reference to the approximated function f

is returned. Thanks to the selection of matrix dimensions, it may be coded simply as:

1 f=@( input ) (Q_f( input ) * t h e t a ) ' ;

The development of function approximation by Gaussian RBF was tested by cross validation.
Cross validation involves randomly partitioning a dataset in training data and testing data. The
training data is used for constructing the θ coe�cients and the test data, smaller, is used to
assess the correctness of the generalization. The partitioning is repeated until all data is used
at least once as testing data. The implementation of cross validation is found in k_fold.m, but
it is not used in the �nal version of the simulation.

6.2 Results

The state equation for the unicycle used as the target simulated robot is

q̇ =



ẋ
ẏ

θ̇


 =




cos θ 0

sin θ 0

0 1



[
u1
u2

]
(6.1)

s = H(q) . (6.2)

where u1 indicates linear speed and u2 indicates rotational speed. Equations (6.1) and (6.2)
are not exposed to the learning and control algorithms: the only data available to modify is u
and the only readable data is s. Three variations of H were tested, which were designed to be
isomorphic mappings in the region of interest:

H1(q) =



x
y

θ


 , H2(q) =




sinh(y)

ex

arctan(θ)


 , H3(q) =



x+ ey

ex − y
θ3


 . (6.3)

These were the simulation parameters for the three cases: the initial state was q0 =
[
0 0 0

]ᵀ
,

with nine samples per axis and a separation of 0.25 units in the �rst stage. For constructing the
dataset, a total of 53 samples, 5 per axis, were taken in the range [−2, 2]. The Gaussian RBF
approximation had 53 bases, a standard deviation of 1.5d where d is the minimum distance
between bases, and regularization term λ = 0.5. The feedback controlled stage for assesment
had intial position (x, y, θ) = (−2, 0.5, π/4), control poles of p1 = p2 = −5 and was controlled
for 2.5 seconds. The standard deviation for the gaussian kernels for each case were σ1 = 1.1970,
σ2 = 0.6643 and σ3 = 3.0745, respectively. The trajectory, observations and gaussian kernel
locations in sensor space of the sensor space mapping stage are shown in Figures 6.3 and 6.4.

The system was successfully controlled to the time axis in the three sensor con�gurations
(Figure 6.5). Errors in the z2-axis of the transformation function φ, corresponding to y in
(x, y, θ) space, along the time axis in chained space were negligible (φ2(τ) = 0 ± 10−13 for
the three cases). In contrast, errors in the z3-axis, corresponding to θ in (x, y, θ) space, were
signi�cant: φ3(τ) = 0±0.0138 for H1, φ3(τ) = 0±0.0759 for H2, and φ3(τ) = 0±0.2356 for H3.
The control law could correct the deviations resulting from inaccuracies in the approximation
of φ, which were perceived as perturbations. The perturbations to the controlled trajectory,
compared to the ideal mapping approximation with no errors, can be seen in Figure 6.5. Errors
resulting from inaccuracies in the actuators were negligible, that is, the positional error comes
from rounding errors in �oating operations.

The sensor space su�ers no transformation in the case of H1, thus the trajectory in sensor
space matches the trajectory in (x, y, θ) space. It can be seen how there is a slight oscillation
around axis y. This is attributed to inaccuracies in phi. In the case of H2, the slight deformation
of the sensor space derives in a slight deviation at around (x, y) = (−1.8, 0.3) in (x, y, θ) space
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Figure 6.3: The trajectory of the simulated system during sensor space sampling (stage two) in
(x, y, θ) coordinates is the same for H1, H2 and H3. Arrows indicate sampled states.

compared to the H1 case, but appropriately controlled. With respect to H3, the oscillation
in the trajectory cannot be explained by the control poles because the latter are real values.
Instead of that, it is explained by in the approximation inaccuracies of the approximated φ
due to an insu�cient number of samples in some regions. These inaccuracies were perceived as
perturbations and corrected appropriately by the control law.

An additional simulation was performed to analyse the limits of the method. In the previous
simulation, the order of the inputs was not speci�ed in the algorithm, but they were the same
in all cases: linear speed and angular speed. In this simulation, the inputs were modi�ed to
analyze the e�ectiveness of the method when the linear component of the input u was slightly
a�ected by rotational movement, and conversely, the rotational component of the input was
slightly a�ected by linear movement. Let R be the ratio between the radius of the left and right
wheel:

R =
rl
rr

(6.4)

In the previous experiment, R = 1. The goal of this other experiment was to test the e�ects
of several ratio values on the feedback controlled trajectory. Therefore, the only change to the
simulation was in the revisited state equation (3.7)

q̇ =



ẋ
ẏ

θ̇


 =




R+ 1

2
cos θ

R+ 1

2
sin θ

R− 1

2



u1 +




R− 1

2
cos θ

R− 1

2
sin θ

R+ 1

2



u2. (6.5)

The rest of the simulation, and speci�cally, the algorithms described in previous sections, re-
mained unchanged. The ratios tested were 1, 1.2, 1.5, 1.8, 2.2 and 4. The results are shown
in Figure 6.6. The learning system was successfully controlled up to R = 1.8. When R = 1,
the results were the same as above, as expected. When R = 1.2, the trajectory of the sensor
space sampling stage and the sample points have a slight deformation, nonetheless the feed-
back controller could correct the deformations in the trajectory. When R = 1.5, the trajectory
is deformed further, so much that the initial state of the feedback controlled system almost
matches the time axis. Thus, the feedback controlled system tracks closely the time axis from
the starting point. When R = 1.8, there is an interesting phenomenon. The trajectory of
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Figure 6.4: Dotted line: Trajectory of the simulated system during sensor space sampling (stage
2) in sensor coordinates for H1 (top), H2 (middle) and H3 (bottom). Solid line: Trajectory of
the robot along the line taken as time axis. Arrows: Sampled observations with their rotations
indicating units of s3 in radians. Crosses: Location of Gaussian kernel centers (bases).
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Figure 6.5: Trajectory of the simulated system after learning of sensorimotor mapping for the
three sensor con�guration transformation functions H1, H2 and H3.

the sensor space sampling stage marginally overlaps with itself. Casually, the trajectory of the
feedback controlled system does not pass through any of the problematic regions by a small
margin, but it is deformed by a great degree compared to the case R = 1. When R = 2.2, the
region su�ering of overlap is much wider and covers the initial state of the feedback controlled
trajectory, which becomes uncontrollable due to the sensor mapping not being isomorphic any
more in those regions. The function approximation cannot deduce which of the overlapping
sampled trajectories should the system follow and the motions become unpredictable. When
R = 4, the whole sensor space is overlapping and control is impossible.

Consequently, the analysis on di�erent wheel radius ratios con�rm the requirement that the
function-approximated mapping from sensor space to chained-form space must be isomorphic
in the sampled region.

6.3 Comparison with PPO algorithm

The approach as implemented in the simulation was compared with a Reinforcement Learning
method called the Proximal Policy Optimization (PPO) algorithm [46].

6.3.1 Introduction to PPO algorithm

Reinforcement Learning (RL) is often used in navigation tasks where the environment of an
agent, including the sensorimotor mapping, is not known. The problem setting described at
Section 2.1 was adapted to Reinforcement Learning method as much as possible to make a fair
comparison with current state of the art methods. The adaptation is not ideal because the
problem setting of this research and the problem setting tackled by RL algorithms is not a
perfect match, but it could be made close enough to make a meaningful evaluation. PPO was
chosen over other methods such as Deep Deterministic Policy Gradient agents (DDPG)[30] or
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Figure 6.6: Simulation of learning of sensorimotor mapping in a unicycle with left and right wheel
radius ratio R. Green: Trajectory during sensor space sampling. Blue: Sample sites. Magenta:
Feedback controlled trajectory.
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Reward

State Action

Agent

Environment

Figure 6.7: Schematic of a Reinforcement Learning agent

Twin-Delayed Deep Deterministic Policy Gradient agents (TD3)[11] due to its simplicity of use
and its proven e�cacy.

Reinforment Learning is a machine learning algorithm that deals with the problem of max-
imizing a reward function by trial and error. Every RL algorithm receives two signals from the
environment (Figure 6.7): The state signal is used by the RL agent to select the most appro-
priate action based on the best-known model of the environment, whilst the reward signal is a
measure of the performance of the RL agent. The RL agent adjusts its internal model of the
environment to improve its performance with respect to the reward signal. RL agents explore
the reward response of the environment by exploring the action space by trial and error.

Actor-Critic methods is a RL method where the agent is composed of two separate learning
entities which are parameterized with neural networks. In Actor-Critic agents, the Critic part
estimates the value function. The value function is a magnitude derived from the reward and
set for each state. The Actor then updates the policy model used for selecting the appropriate
action. Critic and Actor are updated often with exploration of the environment by trial and
error and by receiving rewards.

The Proximal Policy Optimization algorithm is a class of Actor-Critic RL algorithm that
limits the learning rate of the policy functions (Actor and Critic functions) in the regions
where the value function has strong variations. The main idea is that overcorrecting the policy
functions should not lead to regressive policy update decisions. PPO has the advantage that
it supports continuos state values, as opposed to plain RL that only supports discrete state
values. Hence, the proposed method was compared with PPO.

6.3.2 Implementation of PPO algorithm

Results of the approach in the simulated environment described in the previous section was
compared to the Proximal Policy Optimization (PPO) algorithm. The Matlab implementation
of the PPO algorithm found in the Reinforcement Learning Matlab Toolbox was used2. This
implementation allows for great �exibility in the environments and in the agents. The Matlab
Help Center instructions for creating PPO agents was followed3. The parameters for the PPO
agent were set as indicated in Table 6.1. A custom Matlab environment was coded based on the
simulation of the unicycle system, with the same characteristics as the unicycle object created
in Section 6.1. Only the �rst sensor con�guration, i.e. H = H1 was tested. With the purpose
of matching the capabilities of the time-axis linear controller, the PPO agent only controlled
the rotational speed u2 while �xing the linear speed to u1 = 0, therefore control by the PPO
agent was only required on the state-control part of the time axis (Section 3.1.6). The agent
was stopped as soon as the distance to the desired state zd = H(0) incremented, that is, as
soon as the unicycle system stopped approaching the origin. Since u1 = 1 at any moment, this
means that the agent was stopped in every case after crossing the coordinate x = 0. The reward

2https://nl.mathworks.com/products/reinforcement-learning.html
3https://www.mathworks.com/help/reinforcement-learning/ug/ppo-agents.html
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Parameter Value Description

(x0, y0, θ0) N (



−2

0.5

π/4


 , 1/10) Initial position of the agent for each trial

ri 100 ‖z‖−1 Reward function

stop ri < ri−1 Terminal condition

Ts 0.1 Sample time

H H1 Sensor con�guration

256 Experience horizon

64 Mini batch size

γ 0.997 Discount factor

u1 1 Linear speed of the agent

u2 Action by agent Rotational speed of the agent

Table 6.1: Parameters of the PPO agent

of the agent was inversely proportional to the distance to the origin, thus the reward function
was designed to promote reaching the desired state zd = 0.

6.3.3 Results of comparison with PPO algorithm

Several training attempts were needed to obtain a converging PPO agent with reasonable
performance. In the �nal attempt, training was stopped after 138 episodes with a total of
2926 sensor observations and an average reward of 5358 units over the last �ve agents (Fig-
ure 6.8). The last 5 agents were evaluated to controlling the unicycle simulated system from
(x0, y0, θ0) = (−2, 0.5, π/4). The 5 agents were run 5000 times each. The average of the
closest distance to the origin by the PPO agents was µPPO = 0.0878 and standard deviation
σPPO = 0.0878. Figure 6.9 shows the trajectory of one of the PPO agents compared to the
trajectory of the proposed method. These values contrast to the closest distance to the origin
of µH1 = 0.0114 units in the proposed method.

The di�erences between PPO and the proposed method are several. To start with, the
mobile robot only needs to be positioned once at the initial state with the proposed method,
whereas with PPO, the robot needs to be repositioned at the initial state for every training
episode, and again for di�erent locations in the desired region of operability. Moreover, training
of the proposed method takes less time because the number of observations is far smaller than
in PPO training. The proposed method is also safer because it avoids unexpected explotation
in the process of sample collection. Furthermore, the computation requirements of the proposed
method are small enough to execute the learning algorithms in embedded systems with limited
computation and power resources. These di�erences make the proposed method more suitable
to real-world uses than PPO. In contrast, PPO assumes fewer restrictions on the system, so
PPO can be used in a wider range of systems. PPO can, in principle, deal with convoluted
kinematics and sensor con�gurations that are problematic in the proposed method, as shown
in Section 6.2. For these reasons, PPO is more suitable than the proposed method in simulated
environments with weaker requirements than those indicated in the problem setting (Section
2.1).
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Figure 6.8: Evolution of rewards during training of the PPO agents. Dots: Rewards for each
PPO agent. Line: Average reward over the last �ve trained PPO agents.

Figure 6.9: Comparison of trajectories between the proposed method (dotted line) and the PPO
agent (solid line) for the sensor con�guration H1.



Chapter 7

Experiment

In addition to the simulation of the method in a Matlab implementation, an experiment on a
real robot was also realised. In this chapter, the implementation details of the experiment on a
real robot are described and the results reported.

7.1 Implementation

The robotic platform used for experimental assessment was the mobile robot Pioneer 3-DX
(Figure 7.1), which features two feedback-controlled wheels with a high resolution encoder and
a swivel caster for balance 1. As for the sensors, a 5K PTZ camera was used. This camera
features very high resolution images for more accurate sampling of the Jacobians, and may
be controlled remotely for quick recon�guration of the sensor output, which was useful during
the development of the experimental software. A pair of colour beacons were installed on the
robot to simplify the image processing algorithm that detects the position and orientation of
the robot. The beacons were installed on the robot as shown in Figure 7.2.

The software implementation was programmed in C++ and it relies on a set of custom-made
executables connected to each other by CORBA2. CORBA was chosen over other frameworks
such as OpenRTM or ROS due to its easy installation, multi-platform support, �exibility and
low number of dependencies with other softwares. CORBA is an ISO standard for the inter-
connection of computer applications in a network. It is commonly used in high-performance
systems and designed by important industry actors around the world. The main characteristic
of CORBA is that it automates and simpli�es the connection of software modules by de�ning
a common interface between the caller and the callee (Figure 7.3). The interface is described
with a C++-like language called IDL, which is translated by the CORBA implementation to the
programming language that the module will be implemented on. Here I used the OmniORB3

open-source implementation of CORBA to implement the modules in C++.
In robotic applications, the control loop may be described as sensor output, signal computa-

tions, and control input. This makes for three modules, as depicted in Figure 7.4: The sensor
signal module, where the signal from the transducers is transformed and sent over CORBA, the
control module, which reads sensor observations and computes the control law, and the actu-
ator module, which transforms the control signal to electrical signals on the physical actuators.
Thus, the sensor module and the control module communicate with each other by the following
IDL interface:

1 typedef double r e a d i n g s [ 3 ] ;
2 i n t e r f a ce sensor_3D {
3 r e a d i n g s sample ( ) ;

1https://www.cyberbotics.com/doc/guide/pioneer-3dx
2https://www.corba.org
3http://omniorb.sourceforge.net
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Figure 7.1: The Pioneer 3-DX robot.

Figure 7.2: Above: Image frame during the experiment, as seen by the camera. Below: Output
of the image processing algorithm. The resulting position of the green and yellow beacons are
indicated with a cross.

Interface Connector

Module implementing

the interface

Module using

the interface

Figure 7.3: CORBA standard denotation for interface implementations (circle) and interface
users (arc).
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Sensors ActuatorsController

Figure 7.4: Control loop for a system using CORBA between the controller and the input/output
devices.

4 } ;

The sensor module provides just enough data for a sensor observation, corresponding to s =[
s1 s2 s3

]ᵀ
. On the other side, the interface between the control module and the actuator

module follows the IDL de�nition:

1 typedef double i n pu t [ 2 ] ;
2 i n t e r f a ce u n i c y c l e {
3 void app ly_input ( i n i n pu t u , i n double du ra t i on_sec s ) ;
4 } ;

The data is limited to the input signal u =
[
u1 u2

]ᵀ
and an additional �eld duration_secs

that limits the time that the input signal is applied for security reasons and to simplify the
design of the control module. CORBA functions are synchronous, that is, the caller waits until
the callee has �nished executing the task. This feature was used to force the control module to
wait until a sensor observation becomes ready and to wait until the robot has �nished executing
the control command. The control module is an user of both of the aforementioned interfaces.
The sensor and control modules are implementations of the corresponding interface.

Several modules were implemented for each interface, as shown in Figure 7.5, to cover the
needs of development, testing and �nal experiment. Each module is described now.

Sensor monitor

The sensor monitor module is a simple program that samples the sensor values through the
sensor_3D interface with a period of one second and prints the values to the console. This
module is implemented in �le camera.test.cc. Use cases for this module are depicted in Figures
7.6, 7.11 and 7.13.

Camera

The task of the camera module is to grab images from a camera, process the images and provide
the coordinates of the robot with an internal, privately speci�ed robot mapping through the
sensor_3D interface. Figure 7.6 shows the module connectivity for development and testing of
this module, which is implemented in �le camera.cc.

The �rst approach to image processing was to use the image analysis features of OpenCV.
The beacons were circular-shaped and the algorithm for detecting the position of the beacons
was the Hough transform implemented by OpenCV. The beacon was correctly detected. Unfor-
tunately, this approach was not satisfactory because the deformations of the beacon caused by
perspective transformations resulted in the alternating detection of di�erent circles, as shown in
Figure 7.7. Consequently, detection of the true position of the beacon was ambiguous. Retriev-
ing the Jacobian under these conditions was impossible because the Jacobian needs precise and
highly repetitive measurements of the position, despite the accuracy being not so important.

In a second and �nal approach, OpenCV was merely used to retrieve the image frames from
the camera. The numerics library Armadillo4 was used to process the image as follows: First,

4http://arma.sourceforge.net/
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Figure 7.5: CORBA facilitates mix-and-match capabilities between interface users and interface
implementations. This diagram depics all the CORBA modules developed and their relations.

PTZ camera

sensor monitor

Figure 7.6: CORBA setup for the development of the camera module.

Figure 7.7: Image and processing output of the �rst, unsuccessful approach to detect the position
of the beacons based on the Hough transform.
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Figure 7.8: Noise removal steps in the image processing algorithm. Left: original segmented
image. Center: Image after expanding the area of the black pixels. Right: Image after contracting
the region of the black pixels.

Figure 7.9: Camera frame taken during the experiment (left) and the image processing outcome
for the yellow beacon (right).

the image was segmented by discriminating the hue, saturation and value components of each
pixel and for each beacon. Then, the noise was cleaned using an expand and then contract
�lter, as shown in Figure 7.8. Lastly, the centroid of the remaining pixels was calculated. The
position of the beacon was given by the centroid.

The coordinates exposed to the CORBA interface sensor_3D were the x and y camera
coordinates of the green beacon, and the angle between the centroids of the green and yellow
beacons, as shown in Figure 7.9.

Manual control

The manual control module is another simple program that uses the CORBA interface unicycle .
This module is implemented in source �le unicycle_test.cc. It takes two command line arguments
representing the desired linear speed and the desired angular speed. These values are then
commanded to the module implementing the interface unicycle with a �xed duration of 1 second.
This module is useful for repositioning the robot manually, albeit somewhat cumbersome, and
to stop the robot immediately in case of emergency (linear and rotation speeds set to zero).
The use cases of this module are depicted in Figures 7.10, 7.11 and 7.13.

Robot

The Pioneer 3-DX robot is compatible with the C++ library ARIA, which is the de facto
library for all Pioneer robot models. This library has an overwhelming amount of utilities for
controlling the Pioneer robots and for developing robot applications, specially for navigation
purposes. However, this functionality comes at the price of complexity and third-party library
dependencies. The CORBA module that implements the unicycle interface started as a simple
wrapper of the ARIA library5 to the unicycle interface. However, due to di�culties in installation

5https://github.com/reedhedges/AriaCoda
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Pioneer 3-DX
manual control

Figure 7.10: CORBA setup for the development of the robot module.

sensor monitor manual control

Simulator

Figure 7.11: CORBA setup for the development of the simulator.

in the onboard computer and the complexity of the library, this approach was ditched in favour
of a custom-made implementation of the protocol stack of the Pioneer robot, called AROS6.
Implementation of the protocol stack resulted easier than setting up the library in the onboard
computer. The onboard computer was an Apple MacBook Air with operating system OSX.
Many libraries with complex dependencies have di�culties with setting up in OSX, and the
ARIA library was no exception. By developing the protocol stack on standard C++ and with
no external dependencies, it was possible to control the robot from Linux-based computers or
OSX-based computers easily and with deterministic behaviors.

The protocol stack is implemented under the directory pioneer_aros and the module that
connects it to the CORBA framework is in unicycle.cc. Figure 7.10 depicts the CORBA con-
nection diagram during the development of the Pioneer module.

Simulator

The simulator CORBA module was added to simplify development of the control modules. It
consists of two parts: the state equation and the sensor transformation. The simulator applies
the input commands on the unicycle CORBA interface to a dynamic equation solver applied
on (6.1). The resulting state is then transformed by a given sensor transformation function
(6.2) and shared with the controller via the sensor_3D CORBA interface. Thus, the simulator
implements the two CORBA interfaces. The simulator is implemented in �le simulator.cc.
During development, the sensor monitor module and the manual control module were attached
to the interfaces for testing, as shown in Figure 7.11.

Controllers

The controllers for learning the virtual input, mapping the sensor space and testing the mapping
with a feedback controller were developed in three independent modules against the simulator
module, as depicted in Figure 7.12.

The MATLAB code that handles the learning algorithms was ported to C++ using the
Armadillo numerics library. The port is almost straightforward and the simulator module was

6www.inf.ufrgs.br/~prestes/Courses/Robotics/manual_pioneer.pdf
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Stage 1, 2 or 3

controller

Simulator

Figure 7.12: CORBA setup for the development of the controllers for each stage: virtual input
analysis, sensor space exploration, and feedback controller.

used to assess that the algorithms behaved exactly the same as the Matlab counterpart. Thus,
the di�erences between the Matlab simulation and the experiment on the real robot should be
attributed to di�erences between the simulated robot and the real robot, which is precisely the
purpose of realizing a real experiment. The ported code is found in func_approximate.cc and
func_approximate.hh.

The three control modules are now described separately:

1. The module implemented in �le controller_IOD.cc takes care of �nding a virtual input as
indicated in Section 5.1. There is no input to the program. After sampling the Jacobians
in the neightborhood of the initial state, the program will output the input vector u(s(?))

and the input duration ∆t(s(?)) needed by the virtual input u3.

2. The module implemented in �le controller_sensorspace.cc requires the output from the
previous module as program arguments. The module then proceeds to sample the sensor
space by following a prede�ned pattern as indicated in Section 5.2. Data from the sensor
space and data from the applied inputs are gathered into two datasets and written in
�les dataset_sensor.m and dataset_linear.m. These �les are compatible with Matlab �le
format for analysis and plotting of the dataset.

3. The last module is implemented in �le controller_control.cc. This module reads the men-
tioned dataset �les and computes the function approximations φ1, φ2 and φ3 with the
Gaussian RBF method described in Section 4.2. The module then proceeds to operate
the robot with a feedback controller with the same pole con�guration as in the Matlab
simulation p1 = p2 = −5.

7.2 Results

During the experiment, the CORBA modules were connected as depicted in Figure 7.13 to
perform the experiment. The camera module, which implements the sensor_3D interface, was
connected to the controller modules sequentially and also to the sensor monitor to ensure that
the readings were reliable and responsive. Likewise, the pioneer module, which implemented the
unicycle interface, was connected to the controller modules sequentially and also to the manual
control module to ensure that the robot could be stopped in case of error in the control modules
or some other emergency. The CORBA modules were executed in a distributed environment of
three computers: The pioneer module ran on the onboard computer. The camera module ran on
its own computer due to the heavy computations required by the image processing algorithm.
The rest of the modules were run on the terminal computer from where the experiment was
being operated.

The parameters of the controllers were similar to those in the simulation. 6 samples per
axis with a separation of 0.3 units in the �rst stage and 4 samples per axis for the second
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Stage 1, 2 or 3

controller

sensor monitor manual control

Figure 7.13: CORBA setup for the execution of the experiment of the real robot. The sensor
signal was being monitored at all times and the manual control module was ready to override
the controllers to ensure safety of the experiment.

Figure 7.14: Sampled points in camera coordinates for the dataset. The empty-�lled arrow
indicates coordinates of the initial position for stages one and two. The crosses indicate the
location of Gaussian kernel centres. The angle of the arrows indicate the value of s3 in radians.
Note that the camera y-axis is inverted.

stage, thus a reduced number of observations compared to the simulation. The mapping φ was
approximated using 43 bases with a standard deviation of 0.45 and regularisation term λ = 0.5.
The feedback controller had a double pole at −5; the same poles as in the simulation.

The unicycle-like robot executed exploration of the sensor space and feedback control to the
time axis successfully, as depicted in Figure 7.14. The output of the �rst stage was u(?) = u(2)

and ∆t(?) = 1.5 seconds. Four feedback controlled tasks were tested from di�erent starting
points as shown in Figure 7.15, all of them converging from the bottom-left hand side of the
diagram to the approximated position of the time axis. As in the simulations, no back and
forth control was added because the purpose of the feedback controller was just to evaluate the
mapping. Some imperfections are noticeable in the sample observations from the sensor space
exploration stage. They were attributed to perspective deformation, lens aberrations, signal
noise, image processing lag, partial occlusion of beacons and cumulative positional errors.
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Figure 7.15: The feedback controlled trajectories for the experiment on the real robot. The
trajectory marked with À starts at approximately the time axis and follows it. The other three
trajectories converge to the time axis as well. The initial position for stages one and two is
indicated with an empty-�lled arrow.



Chapter 8

Conclusion

This research has proposed a method to tackle controllability of non-holonomic driftless systems
with partially unknown kinematics and unknown sensor con�guration (i.e. unknown sensorimo-
tor mapping). The problem setting is novel because state of the art researches focus on either
the sensorimotor mapping or controllability of non-holonomic systems, but not both. The main
contribution is the automatic design of a virtual input to overcome non-holonomic constraints
and a �xed-pattern method to explore the sensor space, with the previously obtained virtual
input, for enabling controllability of non-holonomic driftless systems with unknown sensorimo-
tor mapping. The result is a method that improves the reach of mobile robotics by facilitating
the �exibility in the design and deployment of these robots.

The proposed method has been successfully tested in a simulated environment and in a real
experiment. The simulated test was realised on Matlab and the real experiment was realised on
a Pioneer3-DX robot with CORBA as middleware platform. Additionally, the Proximal Policy
Optimization algorithm was tested in Matlab under similar problem settings for comparing to
the proposed method.

8.1 Limitations

There are several limitations that were identi�ed in the proposed research. Firstly, the region of
controllability is bound to the explored region in sensor space during the second stage (Section
5.2). This problem can be mitigated by changing the algorithm of function approximation
because the used algorithm, which was Gaussian RBF (Section 4.2), is restricted to interpolated
observations. Another limitation is that in heavily distorted sensor spaces, such as cameras
installed very close to the �oor where the e�ect of the perspective is strong, the accuracy of the
deduction of the virtual input (Section 5.1) can result in problems with dead-reckoning tracking
in chained form during the second stage (Section 5.2). Thirdly, learning is performed o�ine,
which is not always possible or desirable, because it was not possible to rely on methods that
required better knowledge of the dynamic system and the environment, due to the generality
of the problem requirements (Section 2.1). Fourth, sampling the sensor space is a�ected by
the problem known as the curse of dimensionality, whereby each additional dimension in the
problem space increments exponentially the number of necessary observations. Despite the
curse of dimensionality, the proposed method still has better performance than reinforcement
learning methods (Section 6.3.3). Lastly, the method requires that there is no minimum turning
radius ρmin. In other words, it must be capable of turning without moving. So, car-like vehicles,
which have a limitation ρ > ρmin, are not supported by the proposed method.
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8.2 Future works

Despite this work incrementing the �exibility of installing non-holonomic robots, there is still
a lot of room for improving the reach of these robots. It looks like the assumptions made in
Section 2.1 can be relaxed further in potential future works. For example, this method does not
support non-holonomic driftless systems whose control inputs are collinear at the designated

initial state, that is, when j
(0)
1 ‖ j(0)2 (See Section 2.2 for a description of this notation). To

solve this novel problem, an additional stage before acquiring the virtual input (Section 5.1)

could explore linear combinations of control inputs u1 =
[
u1 0

]ᵀ
and u2 =

[
u2 0

]ᵀ
, such

as in uλ = λ1u1 + λ2u2, to �nd the control inputs that make sensor observations vary as

orthogonally as possible (j
(0)
1 ⊥ j(0)2 ).

Another possible future work is the design of an online controller that does not need pre-
training and can learn the sensorimotor even during its �rst initial approach to the desired
state s(d). The fundamental idea is that the sensorimotor mapping is approximated at every
control cycle with a neural network [43], which can extrapolate approximations unlike kernel-
based approximation methods, followed by a control policy given by the continuation method
[48] over the best approximation of the sensorimotor mapping at each control step. If the
controller approximates correctly the sensorimotor mapping, then it should not be a problem
to get gradually closer to s(d), and even faster as it gets closer because with closer observations,
the approximation can get more accurate as well. Recently, [13] proposed a particularisation
to the continuation method based on parametric functions that can solve other limitations in
the method proposed in this thesis, such as restrictions in the minimum radius of rotation of
the mobile robot. [13] is a strong candidate for the control law in potential implementations of
online controllers.
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