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1.1 Motivation

Unknown sensors
e.g. uncalibrated robots

Unknown kinematics
e.g. damaged robots

Unknown environment
e.g. relocation of external sensors
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Can the process to obtain

a controller under these
circumstances be automated?




1.2 Joint coordinates 3

There are many ways
Ex of expressing the
~ )
state of a system.

For example, the joint

angles ¢; in an industrial

manipulator with six
degrees of freedom.

The values ¢g; chosen to

represent the state are called
generalized coordinates.

Here, the control input 1, controls
the rotational speed of joint g, = ¢,



1.2 Cartesian and Euler coordinates 4

Another set of generalized coordinates is

(x,y,2,0,,0,,0,).

fd Movement is restricted
; here to cartesian axis x.

All joints ¢; participate

Converting between

o joint coordinates and
/ J(&)w,.dt these coordinates is
| called forward and
Inverse kinematics

What if the mapping from control coordinates
and joint coordinates is unknown?



1.2 Camera coordinates

A Here, 2 joint coordinates
are controlled.

§5A
>§4

Coordinate 4 =f;c(54a 55)
transformation y =fy(§4, 55)

Control of camera X = F’ x(f4, fs)u
coordinates ) = Fy(54, 55)u

_ﬁcsf! Fxs Fy unknown:
Sensorimotor mapping problem




1.2 Related researches

Automatic sensorimotor mapping:

e Thomas Miller (1987) Sensor-Based Control of Robotic Manipulators

Using a General Learning Algorithm. |EEE J. Robot. Autom., 3(2)
pp.157-165.

* David Pierce and Benjamin J. Kuipers (1997) Map Learning with
Uninterpreted Sensors and Effectors. Artificial Intelligence, 92(1-2)
pp. 169-227.

e Jonathan Mugan (2005) Robot Learning: A Sampling of Methods.
Technical report

e David Navarro-Alarcon, Andrea Cherubini, and Xiang Li (2019) On
Model Adaptation for Sensorimotor Control of Robots. In Proc. 38th
Chinese Control Conf., pp. 2548-2552.

These methods are for holonomic systems only.



1.3 Constraints 7

The glass of wine must not be

rotated by 0, or 0.

degrees of freedom (DoF):

y (x,y,2,0,)

A Therefore, there are four
o,
-

The states where 0, or 0,
change are never reached.

In joint coordinates,

($1> 62,3564, 65, 8) =1 €

and 2 holonomic fex('s') =0
constraints £,E =0



1.3 Non-holonomic constraints 8

Object slips on All states are reachable: But one control
rotation of one axis The system has six input is redundant:
Degrees of Freedom (DoF) It can be removed

In joint coordinates,

($1> 62563564, 65 8) =: €

But no reduction in
number of DoF

Non-holonomic constraint

C(q)g =0 (Pfaffian form)

Control is difficult



1.3 Related researches

Control of non-holonomic systems with known sensorimotor mapping

R.W. Brocket (1983) Asymptotic stability and feedback stabilization.
In Differential Geometry Control Theory, pp.181-191.

M. Galicki (2017) The planning of optimal motions of non-holonomic
systems. Nonlinear dynamics, 90(3) pp. 2163-2184.

A. Censi and R. M. Murray (2015) Bootstrapping bilinear models of
simple vehicles. International Journal of Robotics Research, 34(8) pp.
1087-11138.

|. Goral and K. Tchon (2017) Lagrangian Jacobian motion planning: a
parametric approach. Journal of Intelligent Robotic Systems, 85 pp.
511-522.

These methods assume that the Jacobian is known beforehand.



1.4 Research question 10
v Unknown sensor configuration problem: The generalized
coordinates corresponding to sensor observations are unknown.

v Unknown sensorimotor mapping problem: The kinematics of
the system are unknown as well — The relation between control
iInputs and sensor values is unknown.

= How to enable control of non-holonomic systems with
unknown sensorimotor mapping?

= Benefits:
4+ Increment flexibility of controllers.
+ Simplify deployment of robotics.

+ Improve resilience in damaged robots.



1.4 Problem setting

= Consider the equations of a dynamic affine system:

State equation ¢ = F(q)u u: CGontrol inputs
_ where q: Arbitrary coordinates
Output equation s = H(q) S: Sensor observations

= with non-holonomic constraints in Pfaffian form: C(g)¢ =0
= with unknown kinematics F(qg) ="

= with unknown sensor configuration H(g) = ?

= and only sensor observation vector s is accessible

= Application to
the unicycle

11



1.4 Objective 12

= The objective is to find a control law ¢ such that
u = q@(s)

realizes a desired sensor value of s’ under the conditions of
unknown sensorimotor mapping in a non-holonomic system:

§="u) u: Control inputs
. . §: Sensor observations
= The following assumptions hold:
= The system has one non-holonomic constraint.
= The control input has two components: u = [¥¢; ]!
= The unknown output function s = H(q) is isomorphic.

= One of the inputs rotates the system around itself, i.e. the con-
trolled subspace by the other input changes with the former.

= Use the unicycle as the target system.



2.1 Overview of the proposed approach

= Feedback controller with known kinematics and sensors:

13

S(d) > » Controller |— Target Sensors > S
- System

= But kinematics and sensor

configuration are unknown. Target Sensors
= An equivalent system for System

control is proposed. ¢: sensorimotor

mapping
+ ,/ Equivalent ™ > S

S(d) — Controller

System

= Same control input, transformed sensor coordinates



2.1 Overview of the proposed approach 14

l‘@ 4—||

Stage 1: Virtual input
Analysis of the non-holonomic constraint

InpUt u(l)

<=0 Observation
== == \/irtual input

‘;\'V! g
d A‘/H



2.1 Overview of the proposed approach

Stage 2: Exploration of sensor space -~
and function approximation of ¢ s

<——>95 Observation

Trajectory
Time-axis




2.1 Overview of the proposed approach 16

l‘@ 4—||

Evaluation
Feedback control to the origin (time axis)

Time-axis



2.2 Virtual input 17

The non-holonomic constraint
defines a forbidden direction

We can construct a
composite virtual input
with a similar effect

With equivalent effect
to moving along the
constrained dimensions

Approximation to a
holonomic system



2.2 Jacobians

Jacobian: Change of sensor (camera) coordinates
with respect to control inputs

Jacobian elements
Ja = WAt

Jacobian matrix

nxXm

J enables linear controllability

Zz=Ju

18



2.2 Stage 1: Virtual input 19

4 O i =3 e Obtain the state s™
? / that maximizes j&*
/ T
_ in the forbidden

direction at s,.

et 50 40 340) =41

o The virtual input is the sequence u ;) = (uwAt(*), Uy Aty — uWAt(*)>

e For the unicycle, in (x, y, 8) space, the sample points are:

Af = UQAt
Ax = ui At

—— e —— e —— . ——



2.3 Stage 2: Exploration of sensor space 20

= An equivalent linear system is considered with state equation:

1

0
2= g@)u + gu, such that g,() = [O] and @) = H
%) 0

= This choice of generalized coordinates z is called chained form.

= Chained form is the preferred method for control of non-

holonomic systems in the literature.
(Murray & Sastry, 1991) (Jiang, 1999) (Lefeber et at. 2000, 2004) (Luo & Tsiopras, 2000)

= During sensor exploration, the same control input is applied to
this system and to the target system.

= Sensor values s and equivalent state z are recorded in pairs.

= The coordinate transformation ¢ is calculated by function
approximation, such that Z ~ (s)



2.3 Fixed-pattern path

= The path followed (sequence of control inputs) is the same in the
target system and in the equivalent system:

loop At; :0...ATh

apply input w3 for Aty;

IOOp Atg :0... ATQ

apply input wy,) for Aty;

loop At3:0...AT3

apply input U (50 for Ats;

dataset < dataset U (s, (u(3);u(¢);u(3(*))));

backtrack U (5(x))

backtrack w(y); 53
backtrack w3); (0)
S u
W) 7 4
= Example trajectory in 2 U

: : Ui
chained form coordinates: ()



2.3 Mapping approximation 22

= The dataset {(s;,2;)} is fed to Gaussian RBF function approximation to
obtain the mapping ¢ from sensor space to chained form space.

= Radial Basis Functions (RBF) repeat one function
® (the kernel) in several places b, (the bases) ( H 2)

)=y, 0(s)

D, (s) :=exp|—

= The approximation target is to
minimize the error in  E = 2(z; — D(s,))

= Solution by Least Mean Squares with regularization term A
(One shot learning) (Dy(s;) - Dpls)) ]

0 =070 — /u)—lQTz Qs ..., 8y) =

_(DO(SN) e (DP(SN)_

= The resulting ¢ is the sensorimotor mapping

to the equivalent system. 2= g(@)u; + gu,



2.4 Stage 3: Evaluation 23

= Evaluation of the method is performed by assessing
controllability of the target system.

= Time-axis control was chosen due to its simplicity: It is like
activating cruise control in a car. Only steering is left to the driver.

= Coordinates in chained form are renamed (z, {5, {3) 1= (24, 23, 23)

d
i=”1 —C3=(:2+Ou2
dt dr Cz 0 1
= Time-control part = State-control part

= T is the time scale of the state-control part.

= Time axis is the one dimensional subspace in chained form
corresponding to (0,0) in the state-control part.

= Strategy: Fix #; = | and control 1, with feedback control.

= Switch the sign of i, if T < 0 to reach the origin in chained form.



2.5 Summary of the method 24

= Stage 1: Design a virtual input
v By analyzing the Jacobian elements in the neighborhood of the
initial position.
= Stage 2: Approximate sensor observations to a controllable
equivalent system.
v' The path for sampling the sensor space follows a fixed-pattern.
v Same path is followed in real and equivalent systems.

v Sensor observations are mapped to coordinates in the equivalent
system by function approximation (by Gaussian RBF).

= Evaluation: Control the equivalent system to the origin (time-axis)
v The control inputs are applied to the target system.

v Sensor observations are mapped to coordinates in chained form.



3.1 Simulati

= The method was evaluated in simulation of unicycle on Matlab

on

= Three instances of unknown sensor mapping

X

H\(g) = [y
0

q = F(qu
s = H(q)
I sinh(y) |
] Hy(q) = e*
_arctan(@)_

= |n all cases, s, = (0,0,0)
= The choice of §,; is standard in control engineering, because

= any other s, is possible by a simple transformation s, =5 — s,

H;(q) =

= Virtual input stage: 9 Jacobian samples per axis

x4+ e

= Sensor sampling stage: 5 samples per axis (total 5°)



3.1 Simulation: H, 26

- Stage 1: Virtual input 3, slightly off from ideal trajectory x = 0

= Stage 2: Observation points evenly distributed between kernels
(c = 1.1970) of function approximation

v max £, = 0=x0.014m (Error of function approximation at sensor

observations)
Trajectory in cartesian Bases, time-axis, observations
space ~(sensor space H;)
S S %% ________ o 2F 4 Mo M Rt Moo % -
I R S D VI A VS
— |+ o+ o+ i+ o+ 7
R S SR S o OF =K K % & <
; i + + + + + +
I e Y S e AR +><>+>é+>é+ ----- %,
PRV %% ........ RV 2 Yo e e R Rt
2 r 0 1 2 H, S 1 0 | 2
v [m] s1 [} time axis




3.1 Simulation: H, 27

- Stage 1: Same virtual input 3, as in H,

= Stage 2: Some observations were concentrated between few
kernels (o = 0.6643)

v max £, = 0x0.076m (Error of function approximation)

550% increase with respect to H,

Bases, time-axis, observations

Trajectory in cartesian
(sensor space H,)

space ‘ ‘
of W e e e ] o + + + . + |
+ + &+ - + + +
I S S S o ; | .
— |+ +ooL L +
EOi o X»X» ________ e a @ 4# + + + + +
S | . « F F y
R S S S e T
: Lo G e &
2 M X’X’ ________ X’ _______ X’ ] 074% + §+ E + é + 4%1

2 E CCo[m] 1 g Hy, 3 =2 1 0o 1 2 3

s1 [+ time axis




3.1 Simulation: H; 28

- Stage 1: Same virtual input 5 as in H,

= Strong deformations in sensor space with uneven distribution of
observations between kernels (o = 3.075) due to more complex

mapping.
v max £, = 0=%x0.236m (Error of function approximation)

1701% increase with respect to H, Bases. time-axis

Trajectory in cartesian space | _observations (sensor space /1)
I S S 8 " "
6 T *
D S o S
4 + o
ERELE >§>>€> -------- R *Nzk Ly
> » ¥
A K e e e 0 + 7+
e % ¥
LI S S S T TR
-2 -1 0 1 2 H3 -2 0 2 4 6 8 10
v [m] s1 [-] time axis




3.1 Feedback control: concluding remarks =

nd (’XO’ yo, 60) — (—2,05,71'/4)

= Control poles (=35, — 95)

| IS |

= The system was successfully -

controlled in all cases:
¢ was good enough.

= Sensor space deformation = =
o)

Reduced accuracy of ¢ —
Reduced performance of
feedback controller.

(More kernels and observations

may be required.) g

= The performance of the method
depends strongly on the accuracy
of the approximated function

| — |

0.5

0

0.5

0

time axis
\ Hy
\L >
N\ Hj
2 1 0



3.2 Experiment

= Platform: Pioneer 3-DX

= Off-board 5K PTZ camera
= Onboard laptop

= CORBA Framework

= CORBA Component Model notation

Module name

-9

\

Another module

D_
\

Provider of interface User of interface

30



3.2 Experiment setup

= CORBA layout during the experiment

sensor.test —\_
‘_
virtual input; /

camera

exploration;

time-axis control \f
(U

pioneer

unicycle.test J

= Starting point of stage 1 and 2
at approx. the center of the

camera view ( — )

= 7/ Jacobians per axis (Stage 1)

= 43 sensor observations (Stage

31




3.2 Experimental results

Exploration of sensor space

1500 |-

1000 |-

s2 [+]

500 -

500 1000 1500 2000 2500
51 |-]

s2 |-]

1500 |

1000 |-

500 -

Evaluation

time axis

500

1000 1500 2000 2500
s1 |

= Control to the origin was successful (4 starting points shown)
v Despite sensor observation inaccuracies
v Despite deviations by dead-reckoning

= As per time-axis control, control to the origin should be possible

by switching sign of u;.

32



3.3 Comparison with PPO - settings 33

= Proximal Policy Optimization (PPO) algorithm is a reinforcement
learning (RL) method based on Actor-Critic agents.

v Not designed explicitly for our problem setting.

v RL methods can be adapted to any kind of control problem.

Reward

State

Y

= Similar conditions to the Matlab
environment.

v Constant forward speed u; = 1
v Discount factor y = 0.997
v (xO, yo, 90) —_ (_2,05,71'/4)

Action

Environment

=~ Reward function 7; =100 || z || -l

= Closer to origin: Bigger reward



3.3 Comparison with PPO - results 34

= Training

Average of last 5 agents

v 138 episodes (agents)

v 2926 sensor observations vs.
179 in the proposed method

v Last 5 agents evaluated

= Evaluation

[] u L] O | 1 1 1 1 1.
v Distance to origin 0 20 40 60 80 100 120 140

dPPO —_ = 00783, GdPPO = 00878 Episode

vs. dy = 0.0114 in the
proposed method N H,

= The proposed method is more = T
efficient and more accurate. o

. . . ' _2
= PPO is unfeasible in real environments. r [m]



4. Conclusion 35

= A learning controller for a non-holonomic system with unknown
sensorimotor mapping was developed:

= First, a virtual input U3 IS deduced.

= Then, the sensor space is explored in a fixed pattern.

= A mapping from sensor space to chained form was
approximated with the data obtained previously

= Simulation and experiment were successfully controlled to the
origin by time-axis state control.

= The originality is in the problem tackled and in the method of
virtual input; followed by fixed-pattern exploration.

= Limitations:
» Region of exploration is manually fixed

» Curse of dimensionality
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5.1 Extension: Ratio between wheel radiuses =

;o / L
= u, u1:”1'|2'”2 = —— U ”12”1_5”2
%’ul / / L
U, — U , L
—= U = 7 = — U, ’/‘2=’/‘1+E’/‘2
r
R=-
r Rl S R-1_
CcOS CcoS
ek 2 2
: . R+1 R—-1
q= 1| Y | = T sinf | ui + 5 sin 6 | u2
0
-7 R -1 R+1




5.1 Extension: Ratio between wheel radiuses 4

~

Trajectory of the robot in system space with wheel radius ratior

right/ Tt =1

Trajectory of the robot in system space with wheel radius ratior

yuy

right/Tert™
T T T T T T T T T T T T T T T
Trajectory during exploration Trajectory during exploration
2 & & ——==Locations of sensor acquisition ——== Locations of sensor acquisition
= Trajectory of controlled system 25} = Trajectory of controlled system |
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5.1 Extension: Ratio between wheel radiuses +

y (m)

Trajectory of the robot in system space with wheel radius ratior

right/Tie=1-3

T

T

T

T \' T T
Trajectory during exploration

———==Locations of sensor acquisition
———== Trajectory of controlled system

y (m)

right’ "left

Trajectory of the robot in system space with wheel radius ratior . _/r, =1.8

7 T T

Trajectory during exploration
| ———== Locations of sensor acquisition
== Trajectory of controlled system

/
/




5.1 Extension: Ratio between wheel radiuses +

Trajectory of the robot in system space with wheel radius ratio rﬁgm/rhﬂ=2.2 Trajectory of the robot in system space with wheel radius ratior ngm/"un“
T T /' 'r\b T T T T T 4 N T T T T T T -
5t Trajectory during exploration Trajectory during exploration
—== Locations of sensor acquisition —== Locations of sensor acquisition
———== Trajectory of controlled system B ———== Trajectory of controlled system
4+
3 -
2+
Er
=
0 -
-1 F
2t
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5.2 CORBA modules 4

sensor.test

camera

OpenCV + Armadillo

unicycle.test

IOD
detector
(Stage 1)

Mix @— pioneer

sensor space Match
explorer

(Stage 2)

time-state simulator

controller
(Stage 3)

AA AN AAN A A




5.3 Beacon detection algorithm
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