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2Motivation1.1

Unknown kinematics 
e.g. damaged robots

Unknown sensors 
e.g. uncalibrated robots

Unknown environment 
e.g. relocation of external sensors

Can the process to obtain 
a controller under these 

circumstances be automated?



3Joint coordinates1.2
There are many ways 

of expressing the 
state of a system.

·ξ2 = u2

For example, the joint 
angles  in an industrial 

manipulator with six 
degrees of freedom.

ξi

The values  chosen to 
represent the state are called 

generalized coordinates. 

qi

Here, the control input  controls 
the rotational speed of joint 

u2
q2 = ξ2



4Cartesian and Euler coordinates1.2

Movement is restricted 
here to cartesian axis .x

Another set of generalized coordinates is 
.(x, y, z, θx, θy, θz)

Converting between 
joint coordinates and 
these coordinates is 
called forward and 
inverse kinematics

All joints  participateξi

What if the mapping from control coordinates 
and joint coordinates is unknown?



5Camera coordinates1.2

Control of camera 
coordinates

ξ4

ξ5

x

y

x = fx(ξ4, ξ5)
y = fy(ξ4, ξ5)

Coordinate 
transformation

·x = Fx(ξ4, ξ5)u
·y = Fy(ξ4, ξ5)u

, , ,  unknown: 
Sensorimotor mapping problem

fx fy Fx Fy

Here, 2 joint coordinates 
are controlled.



6Related researches1.2

Automatic sensorimotor mapping:


• Thomas Miller (1987) Sensor-Based Control of Robotic Manipulators 
Using a General Learning Algorithm. IEEE J. Robot. Autom., 3(2) 
pp.157-165.


• David Pierce and Benjamin J. Kuipers (1997) Map Learning with 
Uninterpreted Sensors and Effectors. Artificial Intelligence, 92(1-2) 
pp. 169-227.


• Jonathan Mugan (2005) Robot Learning: A Sampling of Methods. 
Technical report


• David Navarro-Alarcon, Andrea Cherubini, and Xiang Li (2019) On 
Model Adaptation for Sensorimotor Control of Robots. In Proc. 38th 
Chinese Control Conf., pp. 2548-2552.


These methods are for holonomic systems only.



7Constraints1.3
The glass of wine must not be 

rotated by  or .θx θy Therefore, there are four 
degrees of freedom (DoF): 

(x, y, z, θz)

The states where  or  
change are never reached.

θx θy

In joint coordinates, 
(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) =: ξ

and 2 holonomic 
constraints

fθx
(ξ) = 0

fθy
(ξ) = 0



8Non-holonomic constraints1.3
Object slips on 

rotation of one axis
All states are reachable: 

The system has six 
Degrees of Freedom (DoF)

But one control 
input is redundant: 
It can be removed

C(q) ·q = 0 (Pfaffian form)

In joint coordinates, 
(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) =: ξ

Non-holonomic constraint

But no reduction in 
number of DoF

Control is difficult



9Related researches1.3

Control of non-holonomic systems with known sensorimotor mapping


• R.W. Brocket (1983) Asymptotic stability and feedback stabilization. 
In Differential Geometry Control Theory, pp.181-191.


• M. Galicki (2017) The planning of optimal motions of non-holonomic 
systems. Nonlinear dynamics, 90(3) pp. 2163-2184.


• A. Censi and R. M. Murray (2015) Bootstrapping bilinear models of 
simple vehicles. International Journal of Robotics Research, 34(8) pp. 
1087-1113.


• I. Goral and K. Tchon (2017) Lagrangian Jacobian motion planning: a 
parametric approach. Journal of Intelligent Robotic Systems, 85 pp. 
511-522.


These methods assume that the Jacobian is known beforehand.



10Research question1.4

➡ How to enable control of non-holonomic systems with 
unknown sensorimotor mapping?


➡ Benefits:

✦ Increment flexibility of controllers.

✦ Simplify deployment of robotics.

✦ Improve resilience in damaged robots.

✓ Unknown sensor configuration problem: The generalized 
coordinates corresponding to sensor observations are unknown.


✓ Unknown sensorimotor mapping problem: The kinematics of 
the system are unknown as well  —  The relation between control 
inputs and sensor values is unknown.




11Problem setting1.4

·q = F(q)u

s = H(q)

➡ Consider the equations of a dynamic affine system:

➡ with non-holonomic constraints in Pfaffian form: C(q) ·q = 0
➡ with unknown kinematics                   F(q) = ?
➡ with unknown sensor configuration   H(q) = ?

➡ Application to 
the unicycle

State equation

Output equation

: Control inputs 
: Arbitrary coordinates 
: Sensor observations

where
 
 

u
q
s

➡ and only sensor observation vector    is accessibles

 
 

x?
y?
θ?



12Objective1.4
➡ The objective is to find a control law  such that 
 
 
realizes a desired sensor value of  under the conditions of 
unknown sensorimotor mapping in a non-holonomic system: 
 

➡ The following assumptions hold:

➡ The system has one non-holonomic constraint.

➡ The control input has two components:   

➡ The unknown output function    is isomorphic.

➡ One of the inputs rotates the system around itself, i.e. the con-

trolled subspace by the other input changes with the former.

➡ Use the unicycle as the target system.

φ

s(d)

u = [u1 u2]⊺

s = H(q)

u = φ(s)

·s = ?(u) : Control inputs 
: Sensor observations
 u

s



13Overview of the proposed approach2.1

Controller Target 
System Sensors+

-
s(d) su

: sensorimotor 
    mapping
ϕ

Controller Equivalent 
System

+

-
s(d) su

Target 
System Sensors

➡ Feedback controller with known kinematics and sensors:

➡ But kinematics and sensor 
configuration are unknown.


➡ An equivalent system for 
control is proposed.

➡ Same control input, transformed sensor coordinates



14Overview of the proposed approach
Stage 1: Virtual input

20x

2.1

Virtual input
Observation

Analysis of the non-holonomic constraint

Input u(1)

Input u(2)



15Overview of the proposed approach
Stage 2: Exploration of sensor space 
               and function approximation of  ϕ

20x

2.1

Trajectory
Observation

Time-axis



16Overview of the proposed approach
Evaluation 
Feedback control to the origin (time axis)

20x

2.1

Time-axis



17Virtual input2.2

We can construct a 
composite virtual input 

with a similar effect

With equivalent effect 
to moving along the  

constrained dimensions

Approximation to a 
holonomic system

The non-holonomic constraint 
defines a forbidden direction



18Jacobians2.2
Jacobian: Change of sensor (camera) coordinates 
                 with respect to control inputs

J =
Δz
uΔt

n×m

j4 = u(4)Δt

 enables linear controllabilityJ
·z = Ju

j5 = u(5)Δt

Jacobian elements

Jacobian matrix



19Stage 1: Virtual input 2.2

• Obtain the state  
that maximizes    
in the forbidden 
direction at .

s(⋆)

j(⋆)
ψ

s0

• The virtual input is the sequence  u(3) ≡ (uψΔt(⋆), uψΔtd, − uψΔt(⋆))

• For the unicycle, in  space, the sample points are:(x, y, θ)



20Stage 2: Exploration of sensor space2.3

·z = g1(z)u1 + g2u2 g1(z) = [
1
0
z2

] g2(z) = [
0
1
0]such that and

➡ An equivalent linear system is considered with state equation:

➡ This choice of generalized coordinates  is called chained form.

➡ Chained form is the preferred method for control of non-

holonomic systems in the literature. 
(Murray & Sastry, 1991) (Jiang, 1999) (Lefeber et at. 2000, 2004) (Luo & Tsiopras, 2000)

z

➡ During sensor exploration, the same control input is applied to 
this system and to the target system.


➡ Sensor values    and equivalent state    are recorded in pairs.

➡ The coordinate transformation  is calculated by function 

approximation, such that

s z
ϕ
z ≃ ϕ(s)



21Fixed-pattern path2.3
➡ The path followed (sequence of control inputs) is the same in the 

target system and in the equivalent system:

s1

s2

s3

u(3)

u(ψ)

u(s(⋆))
➡ Example trajectory in 

chained form coordinates:



22Mapping approximation2.3

➡ Solution by Least Mean Squares with regularization term   
(One shot learning)

λ

Φk(s) := exp −
s − bk

2

2σ2

θ = (Q⊺Q − λI)−1Q⊺z
Q(s1, …, sN) :=

Φ0(s1) ⋯ ΦP(s1)
⋮ ⋱ ⋮

Φ0(sN) ⋯ ΦP(sN)

➡ Radial Basis Functions (RBF) repeat one function 
 (the kernel) in several places  (the bases)Φ bk

➡ The dataset  is fed to Gaussian RBF function approximation to 
obtain the mapping  from sensor space to chained form space.

{(si, zi)}
ϕ

➡ The approximation target is to 
minimize the error in   E = Σ(zi − Φ(si))

ϕ(s) = ∑
P

k=1
θΦ(s)

➡ The resulting  is the sensorimotor mapping 
to the equivalent system.

ϕ ·z = g1(ϕ(s))u1 + g2u2



➡ Evaluation of the method is performed by assessing 
controllability of the target system.


➡ Time-axis control was chosen due to its simplicity: It is like 
activating cruise control in a car. Only steering is left to the driver.


➡ Coordinates in chained form are renamed  (τ, ζ2, ζ3) := (z1, z2, z3)

23Stage 3: Evaluation2.4

τ
dt

= u1
d
dτ [ζ3

ζ2] = [ζ2

0 ] + [0
1] u2

➡ Time-control part ➡ State-control part

➡  is the time scale of the state-control part.

➡ Time axis is the one dimensional subspace in chained form 

corresponding to  in the state-control part.

➡ Strategy: Fix  and control  with feedback control. 

➡ Switch the sign of  if  to reach the origin in chained form.

τ

(0,0)
u1 = 1 u2

u1 τ < 0



24Summary of the method2.5 

➡ Stage 1: Design a virtual input

✓ By analyzing the Jacobian elements in the neighborhood of the 

initial position.


➡ Stage 2: Approximate sensor observations to a controllable 
              equivalent system.

✓ The path for sampling the sensor space follows a fixed-pattern.

✓ Same path is followed in real and equivalent systems.

✓ Sensor observations are mapped to coordinates in the equivalent 

system by function approximation (by Gaussian RBF).


➡ Evaluation: Control the equivalent system to the origin (time-axis)

✓ The control inputs are applied to the target system.

✓ Sensor observations are mapped to coordinates in chained form.



25Simulation3.1

H1(q) = [
x
y
θ] H2(q) =

sinh(y)
ex

arctan(θ)
H3(q) =

x + ey

ex − y
θ3

➡ The method was evaluated in simulation of unicycle on Matlab

➡ Three instances of unknown sensor mapping

➡ In all cases, 

➡ The choice of    is standard in control engineering, because

➡ any other    is possible by a simple transformation   


➡ Virtual input stage:  Jacobian samples per axis


➡ Sensor sampling stage:  samples per axis (total )

sd = (0,0,0)
sd

s′ d s′ d = s − sd

9

5 53

·q = F(q)u

s = H(q)



26Simulation: H13.1

Trajectory in cartesian 
space

Bases, time-axis, observations 
(sensor space )H1

➡ Stage 1: Virtual input  slightly off from ideal trajectory 


➡ Stage 2: Observation points evenly distributed between kernels 
( ) of function approximation

✓ max m (Error of function approximation at sensor 

observations)


u(3) x = 0

σ = 1.1970
Eϕ3

= 0 ± 0.014

time axis



27Simulation: H23.1

Trajectory in cartesian 
space

Bases, time-axis, observations 
(sensor space )H2

➡ Stage 1: Same virtual input  as in 


➡ Stage 2: Some observations were concentrated between few  
kernels ( )

✓ max m (Error of function approximation) 

550% increase with respect to 

u(3) H1

σ = 0.6643
Eϕ3

= 0 ± 0.076
H1

time axis



28Simulation: H33.1

Trajectory in cartesian space
Bases, time-axis, 

observations (sensor space )H3

➡ Stage 1: Same virtual input  as in 

➡ Strong deformations in sensor space with uneven distribution of 

observations between kernels ( ) due to more complex 
mapping.

✓ max m (Error of function approximation) 

1701% increase with respect to 

u(3) H1

σ = 3.075

Eϕ3
= 0 ± 0.236

H1

time axis



29Feedback control: concluding remarks3.1

➡  


➡ Control poles 

➡ The system was successfully 

controlled in all cases: 
 was good enough.


➡ Sensor space deformation  
Reduced accuracy of   
Reduced performance of 
feedback controller. 
(More kernels and observations 
may be required.)


➡ The performance of the method 
depends strongly on the accuracy 
of the approximated function

(x0, y0, θ0) = (−2,0.5,π/4)

(−5, − 5)

ϕ

→
ϕ →

time axis



30Experiment3.2

Another moduleModule name

Provider of interface User of interface

➡ Platform: Pioneer 3-DX

➡ Off-board 5K PTZ camera

➡ Onboard laptop

➡ CORBA Framework

➡ CORBA Component Model notation



31Experiment setup3.2

virtual input; 
exploration; 

time-axis control

sensor.test

unicycle.test

camera

pioneer

➡ CORBA layout during the experiment

➡ Starting point of stage 1 and 2 
at approx. the center of the 
camera view (             )


➡ 7 Jacobians per axis (Stage 1)


➡  sensor observations (Stage 43



32Experimental results3.2

➡ Control to the origin was successful (4 starting points shown)

✓ Despite sensor observation inaccuracies

✓ Despite deviations by dead-reckoning


➡ As per time-axis control, control to the origin should be possible 
by switching sign of .u1

Exploration of sensor space Evaluation

1

2

3 4

time axis



33Comparison with PPO - settings3.3
➡ Proximal Policy Optimization (PPO) algorithm is a reinforcement 

learning (RL) method based on Actor-Critic agents.

✓ Not designed explicitly for our problem setting.

✓ RL methods can be adapted to any kind of control problem.

Reward

State Action

Agent

Environment

➡ Similar conditions to the Matlab 
environment.


✓ Constant forward speed 

✓ Discount factor 

✓

u1 = 1
γ = 0.997

(x0, y0, θ0) = (−2,0.5,π/4)

➡ Reward function   


➡ Closer to origin: Bigger reward

ri = 100 z −1



34Comparison with PPO - results3.3 
➡ Training


✓ 138 episodes (agents)

✓ 2926 sensor observations vs. 

179 in the proposed method

✓ Last 5 agents evaluated


➡ Evaluation


✓ Distance to origin  
,  

vs.  in the  
proposed method


➡ The proposed method is more 
efficient and more accurate.


➡ PPO is unfeasible in real environments.

dPPO = − 0.0783 σdPPO
= 0.0878

dH0
= 0.0114

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

R
ew

ar
d

 [-
]

Episode index

Average of last 5 agents



35Conclusion4.
➡ A learning controller for a non-holonomic system with unknown 

sensorimotor mapping was developed:


➡ First, a virtual input  is deduced.


➡ Then, the sensor space is explored in a fixed pattern.

➡ A mapping from sensor space to chained form was 

approximated with the data obtained previously

➡ Simulation and experiment were successfully controlled to the 

origin by time-axis state control.

➡ The originality is in the problem tackled and in the method of 

virtual input; followed by fixed-pattern exploration.

➡ Limitations:


‣ Region of exploration is manually fixed


‣ Curse of dimensionality

u(3)
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39Extension: Ratio between wheel radiuses5.1

u′ 1

u′ 2

Lu1

u2 u1 =
u′ 1 + u′ 2

2

u2 =
u′ 2 − u′ 1

L

u′ 1 = u1 −
L
2

u2

u′ 2 = u1 +
L
2

u2

R =
rl

rr



40Extension: Ratio between wheel radiuses5.1



41Extension: Ratio between wheel radiuses5.1



42Extension: Ratio between wheel radiuses5.1



43CORBA modules5.2

camera

pioneer

simulator

sensor.test

unicycle.test

IOD 
detector 
(Stage 1)

sensor space 
explorer 
(Stage 2)

time-state 
controller 
(Stage 3)

Mix 
& 

Match

OpenCV + Armadillo



44Beacon detection algorithm5.3


