

National University Corporation Shizuoka University

Graduate School of Science and Technology

PhD Thesis Presentation

Control of Non-Holonomic Driftless System with Unknown Sensorimotor Model by Jacobian Estimation

Francisco J. (Paco) ARJONILLA GARCÍA

Supervisor: Prof. Yuichi KOBAYASHI

10th of February, 2021

1.1 Motivation

Unknown sensors *e.g.* uncalibrated robots

Unknown kinematics *e.g.* damaged robots

Unknown environment e.g. relocation of external sensors

Can the process to obtain a controller under these circumstances be automated?

1.2 Joint coordinates

There are many ways of expressing the state of a system.

For example, the joint angles ξ_i in an industrial manipulator with six degrees of freedom.

The values q_i chosen to represent the state are called generalized coordinates.

Here, the control input u_2 controls the rotational speed of joint $q_2 = \xi_2$

1.2 Cartesian and Euler coordinates

Another set of generalized coordinates is

Movement is restricted here to cartesian axis *x*.

All joints ξ_i participate

Converting between joint coordinates and these coordinates is called forward and inverse kinematics

What if the mapping from control coordinates and joint coordinates is unknown?

1.2 Camera coordinates

Here, 2 joint coordinates are controlled.

Coordinate transformation

 $x = f_x(\xi_4, \xi_5)$ $y = f_v(\xi_4, \xi_5)$

Control of camera

 $\dot{x} = F_{x}(\xi_{4},\xi_{5})\boldsymbol{u}$ coordinates $\dot{y} = F_v(\xi_4, \xi_5) \boldsymbol{u}$

 f_x, f_y, F_x, F_y unknown: Sensorimotor mapping problem

 \mathcal{X}

Automatic sensorimotor mapping:

- Thomas Miller (1987) Sensor-Based Control of Robotic Manipulators Using a General Learning Algorithm. IEEE J. Robot. Autom., 3(2) pp.157-165.
- David Pierce and Benjamin J. Kuipers (1997) Map Learning with Uninterpreted Sensors and Effectors. Artificial Intelligence, 92(1-2) pp. 169-227.
- Jonathan Mugan (2005) Robot Learning: A Sampling of Methods. Technical report
- David Navarro-Alarcon, Andrea Cherubini, and Xiang Li (2019) On Model Adaptation for Sensorimotor Control of Robots. In Proc. 38th Chinese Control Conf., pp. 2548-2552.

These methods are for **holonomic systems** only.

1.3 Constraints

The glass of wine must not be rotated by θ_{χ} or θ_{χ} . $\theta_z =$

Therefore, there are four degrees of freedom (DoF): (x, y, z, θ_{7})

The states where θ_x or θ_y change are never reached.

In joint coordinates, $(\xi_1,\xi_2,\xi_3,\xi_4,\xi_5,\xi_6) =: \boldsymbol{\xi}$

and 2 holonomic constraints

 $f_{\theta_x}(\boldsymbol{\xi}) = 0$ $f_{\theta_y}(\boldsymbol{\xi}) = 0$

1.3 Non-holonomic constraints

Object slips on rotation of one axis

All states are reachable: The system has six Degrees of Freedom (DoF) But one control input is redundant: It can be removed

In joint coordinates, $(\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6) =: \xi$

But no reduction in number of DoF

Non-holonomic constraint $C(q)\dot{q} = 0$ (Pfaffian form)

Control is difficult

Control of non-holonomic systems with known sensorimotor mapping

- R.W. Brocket (1983) *Asymptotic stability and feedback stabilization.* In Differential Geometry Control Theory, pp.181-191.
- M. Galicki (2017) *The planning of optimal motions of non-holonomic systems.* Nonlinear dynamics, 90(3) pp. 2163-2184.
- A. Censi and R. M. Murray (2015) *Bootstrapping* bilinear models of simple vehicles. International Journal of Robotics Research, 34(8) pp. 1087-1113.
- I. Goral and K. Tchon (2017) Lagrangian Jacobian motion planning: a parametric approach. Journal of Intelligent Robotic Systems, 85 pp. 511-522.

These methods assume that the Jacobian is known beforehand.

1.4 Research question

- Unknown sensor configuration problem: The generalized coordinates corresponding to sensor observations are unknown.
- Unknown sensorimotor mapping problem: The kinematics of the system are unknown as well — The relation between control inputs and sensor values is unknown.
 - How to enable control of non-holonomic systems with unknown sensorimotor mapping?
 - Benefits:
 - Increment flexibility of controllers.
 - Simplify deployment of robotics.
 - Improve resilience in damaged robots.

1.4 Problem setting

Consider the equations of a dynamic affine system:

State equation $\dot{q} = F(q)u$ u: Control inputsWhereq: Arbitrary coordinatesOutput equations = H(q)S: Sensor observations

- → with non-holonomic constraints in Pfaffian form: $C(q)\dot{q} = 0$
- → with unknown kinematics F(q) = ?
- with unknown sensor configuration H(q) = ?
- \rightarrow and only sensor observation vector *s* is accessible

 Application to the unicycle

1.4 Objective

The objective is to **find a control law** φ such that

$$\boldsymbol{u}=\varphi(\boldsymbol{s})$$

realizes a desired sensor value of $s^{(d)}$ under the conditions of unknown sensorimotor mapping in a non-holonomic system:

$$\dot{s} = ?(u)$$

u: Control inputs

s: Sensor observations

The following assumptions hold:

- The system has one non-holonomic constraint.
- The control input has two components: $u = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^T$
- The unknown output function s = H(q) is **isomorphic**.
- One of the inputs *rotates* the system around itself, *i.e.* the controlled subspace by the other input changes with the former.
- Use the unicycle as the target system.

Feedback controller with known kinematics and sensors:

13

Same control input, transformed sensor coordinates

Stage 1: Virtual input Analysis of the non-holonomic constraint

hput "

20x

Observation
 Virtual input

14

15

Stage 2: Exploration of sensor space and function approximation of ϕ

Observation 20x Trajectory Time-axis

Evaluation

20x

Feedback control to the origin (time axis)

Condition

16

The non-holonomic constraint defines a forbidden direction

We can construct a composite *virtual input* with a similar effect

With equivalent effect to moving along the constrained dimensions

Approximation to a holonomic system

2.2 Jacobians

Jacobian: Change of sensor (camera) coordinates with respect to control inputs

Jacobian elements

$$j_4 = u_{(4)}\Delta t$$
$$j_5 = u_{(5)}\Delta t$$

Jacobian matrix

$$J = \frac{\Delta z}{u\Delta t} \bigg|_{n \times m}$$

J enables linear controllability

 $\dot{z} = Ju$

2.2 Stage 1: Virtual input

• For the unicycle, in (x, y, θ) space, the sample points are:

2.3 Stage 2: Exploration of sensor space

- An equivalent linear system is considered with state equation:
- $\dot{z} = g_1(z)u_1 + g_2u_2$ such that $g_1(z) = \begin{bmatrix} 1 \\ 0 \\ z_2 \end{bmatrix}$ and $g_2(z) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
- This choice of generalized coordinates z is called chained form.
- Chained form is the preferred method for control of nonholonomic systems in the literature. (Murray & Sastry, 1991) (Jiang, 1999) (Lefeber et at. 2000, 2004) (Luo & Tsiopras, 2000)
- During sensor exploration, the same control input is applied to this system and to the target system.
- Sensor values s and equivalent state z are recorded in pairs.
- The coordinate transformation ϕ is calculated by function approximation, such that $z \simeq \phi(s)$

2.3 Fixed-pattern path

The path followed (sequence of control inputs) is the same in the target system and in the equivalent system:

 Example trajectory in chained form coordinates:

2.3 Mapping approximation

- → The dataset $\{(s_i, z_i)\}$ is fed to Gaussian RBF function approximation to obtain the mapping ϕ from sensor space to chained form space.
- Radial Basis Functions (RBF) repeat one function Φ (the kernel) in several places \boldsymbol{b}_k (the bases)

$$\phi(s) = \sum_{k=1}^{P} \theta \Phi(s)$$

The approximation target is to minimize the error in $E = \Sigma(z_i - \Phi(s_i))$

Solution by Least Mean Squares with regularization term λ (One shot learning) $\begin{bmatrix}
Φ_0(s_1) & \cdots & Φ_p
\end{bmatrix}$

$$\boldsymbol{\theta} = (Q^{\mathsf{T}}Q - \lambda I)^{-1}Q^{\mathsf{T}}z$$

 $Q(\mathbf{s}_1, \dots, \mathbf{s}_N) := \begin{bmatrix} \Phi_0(\mathbf{s}_1) & \cdots & \Phi_P(\mathbf{s}_1) \\ \vdots & \ddots & \vdots \\ \Phi_0(\mathbf{s}_N) & \cdots & \Phi_P(\mathbf{s}_N) \end{bmatrix}$

- The resulting ϕ is the sensorimotor mapping to the equivalent system.
- $\dot{z} = \boldsymbol{g}_1(\phi(\boldsymbol{s}))\boldsymbol{u}_1 + \boldsymbol{g}_2\boldsymbol{u}_2$

2.4 Stage 3: Evaluation

- Evaluation of the method is performed by assessing controllability of the target system.
- Time-axis control was chosen due to its simplicity: It is like activating cruise control in a car. Only steering is left to the driver.
- → Coordinates in chained form are renamed $(\tau, \zeta_2, \zeta_3) := (z_1, z_2, z_3)$

$$\frac{\tau}{dt} = u_1 \qquad \qquad \frac{d}{d\tau} \begin{bmatrix} \zeta_3 \\ \zeta_2 \end{bmatrix} = \begin{bmatrix} \zeta_2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_2$$

➡ Time-control part

➡ State-control part

- τ is the **time scale** of the state-control part.
- Time axis is the one dimensional subspace in chained form corresponding to (0,0) in the state-control part.
- Strategy: Fix $u_1 = 1$ and control u_2 with feedback control.
- Switch the sign of u_1 if $\tau < 0$ to reach the origin in chained form.

Stage 1: Design a virtual input

 By analyzing the Jacobian elements in the neighborhood of the initial position.

Stage 2: Approximate sensor observations to a controllable equivalent system.

- The path for sampling the sensor space follows a fixed-pattern.
- Same path is followed in real and equivalent systems.
- Sensor observations are mapped to coordinates in the equivalent system by function approximation (by Gaussian RBF).
- Evaluation: Control the equivalent system to the origin (time-axis)
 - The control inputs are applied to the target system.
 - Sensor observations are mapped to coordinates in chained form.

3.1 Simulation

The method was evaluated in simulation of unicycle on Matlab

 $\dot{q} = F(q)u$

Three instances of unknown sensor mapping

$$s = H(q)$$

$$H_{1}(q) = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \qquad H_{2}(q) = \begin{bmatrix} \sinh(y) \\ e^{x} \\ \arctan(\theta) \end{bmatrix} \qquad H_{3}(q) = \begin{bmatrix} x + e^{y} \\ e^{x} - y \\ \theta^{3} \end{bmatrix}$$

- → In all cases, $s_d = (0,0,0)$
 - The choice of s_d is standard in control engineering, because
 - → any other s'_d is possible by a simple transformation $s'_d = s s_d$
- Virtual input stage: 9 Jacobian samples per axis
- Sensor sampling stage: 5 samples per axis (total 5^3)

3.1 Simulation: H_1

- Stage 1: Virtual input $u_{(3)}$ slightly off from ideal trajectory x = 0
- Stage 2: Observation points evenly distributed between kernels ($\sigma = 1.1970$) of function approximation
 - ✓ max $E_{\phi_3} = 0 \pm 0.014$ m (Error of function approximation at sensor observations)

3.1 Simulation: H_2

Stage 1: Same virtual input $\boldsymbol{u}_{(3)}$ as in H_1

- Stage 2: Some observations were concentrated between few kernels ($\sigma = 0.6643$)
 - ✓ max $E_{\phi_3} = 0 \pm 0.076$ m (Error of function approximation) 550% increase with respect to H_1

3.1 Simulation: H_3

- Stage 1: Same virtual input $\boldsymbol{u}_{(3)}$ as in H_1
- → Strong deformations in sensor space with uneven distribution of observations between kernels ($\sigma = 3.075$) due to more complex mapping.
 - ✓ max $E_{\phi_3} = 0 \pm 0.236$ m (Error of function approximation) 1701% increase with respect to H_1 Bases, time-axis,

3.1 Feedback control: concluding remarks

→
$$(x_0, y_0, \theta_0) = (-2, 0.5, \pi/4)$$

- Control poles (-5, -5)
- Sensor space deformation →
 Reduced accuracy of φ →
 Reduced performance of
 feedback controller.
 (More kernels and observations may be required.)
- The performance of the method depends strongly on the accuracy of the approximated function

3.2 Experiment

- ➡ Platform: Pioneer 3-DX
- Off-board 5K PTZ camera
- Onboard laptop
- CORBA Framework

CORBA Component Model notation

3.2 Experiment setup

CORBA layout during the experiment

- Starting point of stage 1 and 2 at approx. the center of the camera view (——>)
- ➡ 7 Jacobians per axis (Stage 1)
- 4^3 sensor observations (Stage

3.2 Experimental results

- Control to the origin was successful (4 starting points shown)
 - Despite sensor observation inaccuracies
 - ✓ Despite deviations by dead-reckoning
- As per time-axis control, control to the origin should be possible by switching sign of u₁.

3.3 Comparison with PPO - settings

- Proximal Policy Optimization (PPO) algorithm is a reinforcement learning (RL) method based on Actor-Critic agents.
 - ✓ Not designed explicitly for our problem setting.
 - RL methods can be adapted to any kind of control problem.

- Similar conditions to the Matlab environment.
 - ✓ Constant forward speed $u_1 = 1$

✓ Discount factor
$$\gamma = 0.997$$

$$\checkmark (x_0, y_0, \theta_0) = (-2, 0.5, \pi/4)$$

Reward function $r_i = 100 \parallel z \parallel^{-1}$

Closer to origin: Bigger reward

3.3 Comparison with PPO - results

Training

- 138 episodes (agents)
- 2926 sensor observations vs.
 179 in the proposed method
- Last 5 agents evaluated
- Evaluation
 - ✓ Distance to origin $d_{PPO} = -0.0783$, $\sigma_{d_{PPO}} = 0.0878$ vs. $d_{H_0} = 0.0114$ in the proposed method
- The proposed method is more efficient and more accurate.
- PPO is unfeasible in real environments.

4. Conclusion

- A learning controller for a non-holonomic system with unknown sensorimotor mapping was developed:
 - → First, a virtual input $u_{(3)}$ is deduced.
 - Then, the sensor space is explored in a fixed pattern.
 - A mapping from sensor space to chained form was approximated with the data obtained previously
- Simulation and experiment were successfully controlled to the origin by time-axis state control.
- The originality is in the problem tackled and in the method of virtual input; followed by fixed-pattern exploration.
- Limitations:
 - Region of exploration is manually fixed
 - Curse of dimensionality

4. References

- Amar, K. and Mohamed, S. (2013), "Stabilized feedback control of unicycle mobile robots. International Journal of Advanced Robotic Systems, Vol. 10 No. 2.
- Astolfi, A. (1995), "Exponential stabilization of a car-like vehicle", in IEEE International Conference on Robotics and Automatics, Nagoya, pp. 1391–1396.
- Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A. (2016), "Historical and critical review of the development of nonholonomic mechanics: the classical period". Regular and Chaotic Dynamics, Vol. 21, No. 4, pp. 455–476.
- Brockett, R. (1983). "Asymptotic stability and feedback stabilization", Differential Geometric Control Theory, Birkhauser, pp. 181–191.
- Choset, H.M., Hutchinson, S., Lynch, K.M., and Kantor, G. (2005), Principles of robot motion: theory, algorithms, and implementation, MIT press, Cambridge.
- D'Andrea-Novel, Bastin, G., and Campion, G. (1991), "Modelling and control of non-holonomic wheeled mobile robots", in IEEE International Conference on Robotics and Automation, Sacramento, California, pp. 1130–1135.
- Dominguez, S., Campoy, P., Sebastian, J. M., and Jimenez, A. (2006), Control en el Espacio de Estado, Prentice Hall, Madrid.
- Graefe, V. and Maryniak, A. (1998), "The sensor-control Jacobian as a basis for controlling calibrationfree robots", in IEEE International Symposium on Industrial Electronics, Pertoria, pp. 420–425.
- Harada, K. and Kobayashi, Y. (2017), "Estimation of structure and physical relations among multi-modal sensor variables for musculoskeletal robotic arm", in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Daegu, pp. 547–552.
- Jiang, Z. P. and Nijmeijer, H. (1999), "A recursive technique for tracking control of nonholonomic systems in chained form". IEEE Transactions on Automatic Control, Vol. 44, No. 2, pp. 265–279.
- Kobayashi, Y., Kurita, E., and Gouko, M. (2013), "Integration of multiple sensor spaces with limited sensing range and redundancy". International Journal of Robotics and Automation, Vol. 28, No. 1.
- Smart, W. D., & Pack Kaelbling, L. (2002). Effective Reinforcement Learning for Mobile Robots.

4. References

- Kolmanovsky, I. and Mcclamroch, N. H. (1995), "Developments in nonholonomic control problems". IEEE Control Systems, Vol. 15, No. 6, pp. 20–36.
- Kondor, R. (2004), "Regression by linear combination of basis functions", unpublished manuscript.
- Lefeber, E., Robertsson, A., and Nijmeijer, H. (2000), "Linear controllers for exponential tracking of systems in chained form". International Journal of Robust and Nonlinear Control, Vol. 10, pp. 243– 263.
- Lefeber, E., Robertsson, A., and Nijmeijer, H. (2004). "Linear controllers for tracking chained-form systems", lecture notes in Control and Information Sciences, pp. 183–199.
- Luo, J. and Tsiotras, P. (2000), "Control design for chained-form systems with bounded inputs". Systems & Control Letters, Vol. 39, No. 2, pp. 123–131.
- Miller, W. T. (1987), "Sensor-based control of robotic manipulators using a general learning algorithm". IEEE Journal on Robotics and Automation, Vol. 3, No. 2, pp. 157–165.
- Murray, R.M. and Sastry, S.S. (1991), "Steering nonholonomic systems in chained form", in IEEE Conference on Decision and Control, Brighton, pp. 1121–1126.
- Navarro-Alarcon, D., Cherubini, A., and Li, X. (2019), "On model adaptation for sensorimotor control of robots", in IEEE Chinese Control Conference, Guangzhou, pp. 2548–2552.
- Rifford, L. (2008), "Stabilization problem for nonholonomic control systems", Geometric Control And Nonsmooth Analysis, Series on Advances in Mathematics for Applied Sciences, pp. 260–269.
- Sampei, M. (1994), "A control strategy for a class of non-holonomic systems time-state control form and its application", in IEEE Conference on Decision and Control, Florida, pp. 1120–1121.
- Sampei, M., Kiyota, H., Koga, M., and Suzuki, M. (1996), "Necessary and sufficient conditions for transformation of nonholonomic system into time-state control form", in IEEE Conference on Decision and Control, Kobe, pp. 4745–4746.
- Zeng, J., Ju, R., Qin, L., Hu, Y., Yin, Q., & Hu, C. (2019). "Navigation in Unknown Dynamic Environments Based on Deep Reinforcement Learning. Sensors"

Control of Non-Holonomic Driftless System with Unknown Sensorimotor Model by Jacobian Estimation

Francisco J. (Paco) ARJONILLA GARCÍA PhD Thesis Presentation

Thank you for your attention

$$R = \frac{r_l}{r_r}$$
$$\dot{\boldsymbol{q}} = \begin{bmatrix} \dot{\boldsymbol{x}} \\ \dot{\boldsymbol{y}} \\ \dot{\boldsymbol{\theta}} \end{bmatrix} = \begin{bmatrix} \frac{R+1}{2}\cos\theta \\ \frac{R+1}{2}\sin\theta \\ \frac{R-1}{2} \\ \frac{R-1}{2} \end{bmatrix} u_1 + \begin{bmatrix} \frac{R-1}{2}\cos\theta \\ \frac{R-1}{2}\sin\theta \\ \frac{R+1}{2} \\ \frac{R+1}{2} \end{bmatrix} u_2$$

5.3 Beacon detection algorithm

